Supporting Information

Modulating spin dynamics of Ln^{III}-radical complexes by using different coligand

Ting Li, Shang Yong Zhou, Xin Li, Li Tian*, Dai Zheng Liao, Zhong Yi Liu and Jian Hua Guo

Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.

Figure S1. Powder X-ray diffractions of **1-3**.

Figure S2. Powder X-ray diffractions of **4-6**.

Figure S3. Simplified view of the crystal structure of **1**. Fluorine, hydrogen, and some carbon atoms are omitted for clarity.

Figure S4. Simplified view of the crystal structure of **2**. Fluorine, hydrogen, and some carbon atoms are omitted for clarity.

		1	
Dy(1)-O(1)	2.416(5)	O(7)-Dy(1)-O(1)	91.9(2)
Dy(1)-O(3)	2.369(6)	O(4)-Dy(1)-O(1)	139.0(2)
Dy(1)-O(4)	2.350(6)	O(6)-Dy(1)-O(1)	76.22(19)
Dy(1)-O(5)	2.503(6)	O(3)-Dy(1)-O(1)	142.3(2)
Dy(1)-O(6)	2.351(6)	O(8)-Dy(1)-O(1)	70.0(2)
Dy(1)-O(7)	2.337(6)	O(1)-Dy(1)-O(5)	130.9(2)
Dy(1)-O(8)	2.390(6)	O(1)-Dy(1)-N(5)	67.8(2)
Dy(1)-O(15)	2.392(6)	O(4)-Dy(1)-N(5)	71.7(2)
Dy(1)-N(5)	2.698(7)	O(6)-Dy(1)-N(5)	68.1(2)
Dy(2)-O(2)	2.408(6)	N(1)-O(1)-Dy(1)	129.2(5)
Dy(2)-O(9)	2.364(6)	O(9)-Dy(2)-O(2)	74.8(2)
Dy(2)-O(10)	2.478(5)	O(11)-Dy(2)-O(2)	142.3(2)
Dy(2)-O(11)	2.372(6)	O(12)-Dy(2)-O(2)	136.4(2)
Dy(2)-O(12)	2.366(6)	O(14)-Dy(2)-O(2)	66.4(2)
Dy(2)-O(13)	2.353(6)	O(2)-Dy(2)-O(10)	132.6(2)
Dy(2)-O(14)	2.376(6)	O(9)-Dy(2)-N(3)	65.4(2)
Dy(2)-O(16)	2.390(6)	O(2)-Dy(2)-N(3)	67.1(2)
Dy(2)-N(3)	2.625(7)	N(2)-O(2)-Dy(2)	131.6(5)
		2	
Gd(1)-O(1)	2.439(4)	O(3)-Gd(1)-O(1)	142.62(18)
Gd(1)-O(3)	2.390(5)	O(4)-Gd(1)-O(1)	138.93(16)
Gd(1)-O(4)	2.360(5)	O(5)-Gd(1)-O(1)	69.90(16)
Gd(1)-O(5)	2.402(5)	O(6)-Gd(1)-O(1)	91.73(16)
Gd(1)-O(6)	2.353(5)	O(8)-Gd(1)-O(1)	76.56(16)
Gd(1)-O(7)	2.510(5)	O(3)-Gd(1)-N(5)	133.68(17)
Gd(1)-O(8)	2.385(5)	O(4)-Gd(1)-N(5)	71.64(16)
Gd(1)-O(15)	2.416(4)	O(5)-Gd(1)-N(5)	119.22(16)
Gd(1)-N(5)	2.689(5)	O(8)-Gd(1)-N(5)	67.67(16)
Gd(2)-O(2)	2.408(4)	N(1)-O(1)-Gd(1)	128.2(4)
Gd(2)-O(9)	2.497(5)	O(2)-Gd(2)-N(3)	66.87(16)
Gd(2)-O(10)	2.383(5)	O(2)-Gd(2)-O(9)	132.67(16)
Gd(2)-O(11)	2.371(5)	O(2)-Gd(2)-O(16)	77.57(16)
Gd(2)-O(12)	2.363(5)	O(11)-Gd(2)-N(3)	115.82(18)
Gd(2)-O(13)	2.381(4)	O(12)-Gd(2)-N(3)	67.49(17)
Gd(2)-O(14)	2.382(5)	O(13)-Gd(2)-N(3)	133.53(16)
Gd(2)-O(16)	2.411(5)	O(10)-Gd(2)-N(3)	65.33(17)
Gd(2)-N(3)	2.641(6)	N(2)-O(2)-Gd(2)	131.9(4)
		3	
Tb(1)-O(1)	2.424(3)	O(3)-Tb(1)-O(1)	92.06(12)
Tb(1)-O(3)	2.334(4)	O(6)-Tb(1)-O(1)	138.80(12)
Tb(1)-O(4)	2.400(4)	O(8)-Tb(1)-O(1)	76.47(12)

Table S1. Selected bond lengths (Å) and bond angles (°) for complex 1–4.

Tb(1)-O(5)	2.376(4)	O(5)-Tb(1)-O(1)	142.34(13)
Tb(1)-O(6)	2.359(4)	O(4)-Tb(1)-O(1)	69.76(12)
Tb(1)-O(7)	2.505(4)	O(1)-Tb(1)-O(7)	130.80(12)
Tb(1)-O(8)	2.367(4)	O(1)-Tb(1)-N(5)	67.87(12)
Tb(1)-O(15)	2.402(3)	O(7)-Tb(1)-N(5)	124.91(13)
Tb(1)-N(5)	2.697(4)	N(1)-O(1)-Tb(1)	128.7(3)
Tb(2)-O(2)	2.407(3)	O(9)-Tb(2)-O(2)	91.14(13)
Tb(2)-O(9)	2.350(4)	O(12)-Tb(2)-O(2)	136.01(12)
Tb(2)-O(10)	2.379(4)	O(14)-Tb(2)-O(2)	74.76(12)
Tb(2)-O(11)	2.372(3)	O(11)-Tb(2)-O(2)	142.70(12)
Tb(2)-O(12)	2.369(3)	O(10)-Tb(2)-O(2)	66.53(12)
Tb(2)-O(13)	2.488(3)	O(2)-Tb(2)-N(3)	67.02(12)
Tb(2)-O(14)	2.371(3)	O(2)-Tb(2)-O(13)	132.44(12)
Tb(2)-O(16)	2.396(4)	O(16)-Tb(2)-O(13)	69.33(12)
Tb(2)-N(3)	2.630(4)	N(2)-O(2)-Tb(2)	132.1(3)
		4	
Gd(1)-O(8)	2.321(6)	O(8)-Gd(1)-O(3)	80.2(2)
Gd(1)-O(3)	2.327(8)	O(8)-Gd(1)-O(5)	75.1(2)
Gd(1)-O(5)	2.338(6)	O(3)-Gd(1)-O(5)	79.8(2)
Gd(1)-O(6)	2.348(6)	O(8)-Gd(1)-O(6)	114.6(2)
Gd(1)-O(4)	2.361(8)	O(3)-Gd(1)-O(6)	141.9(2)
Gd(1)-O(1)	2.368(6)	O(5)-Gd(1)-O(6)	71.5(2)
Gd(1)-O(7)	2.397(7)	O(8)-Gd(1)-O(4)	142.5(3)
Gd(1)-N(1)	2.651(7)	O(8)-Gd(1)-N(1)	79.2(2)
Gd(2)-O(15)	2.332(10)	O(15)-Gd(2)-O(11)	143.6(3)
Gd(2)-O(14)	2.344(8)	O(14)-Gd(2)-O(11)	112.5(2)
Gd(2)-O(11)	2.347(8)	O(15)-Gd(2)-O(12)	79.7(3)
Gd(2)-O(12)	2.350(8)	O(15)-Gd(2)-O(9)	105.8(3)
Gd(2)-O(13)	2.368(6)	O(11)-Gd(2)-O(9)	81.1(3)
Gd(2)-O(9)	2.388(7)	O(15)-Gd(2)-O(16)	73.5(3)
Gd(2)-O(16)	2.406(9)	O(14)-Gd(2)-O(16)	145.8(3)
Gd(2)-N(6)	2.687(8)	O(14)-Gd(2)-N(6)	79.2(2)

Equations for simulating the variable temperature susceptibilities of compound 1:

$$\begin{split} \chi &= \frac{N\beta^2}{12kT} \times \left[\frac{4}{B}\right] \end{split} \tag{1}$$

Figure S5. Temperature dependence of the imaginary of the in-phase (χ') and out-ofphase (χ'') components of the AC magnetic susceptibility for complex **2** in zero applied field in the range 30 Hz to 1500 Hz.

Figure S6. Temperature dependence of the imaginary of the in-phase (χ') and out-ofphase (χ'') components of the AC magnetic susceptibility for complex **6** in zero applied field in the range 30 Hz to 1500 Hz.