Supporting Information

Aerobic oxidation at benzylic positions catalyzed by a simple Pd(OAc)₂/bis-triazole system

Garazi Urgoitia, Ainhoa Maiztegi, Raul SanMartin, * Maria Teresa Herrero and Esther Dominguez*

Department of Organic Chemistry, University of Basque Country (UPV/EHU), 48940 Leioa, Spain

raul.sanmartin@ehu.eus

1. General remarks.	1
2. Synthesis of 2,6-dibromoisonicotinic acid	2
3. Synthesis of 2,6-bis(3-butylimidazolium-1-yl)isonicotinic acid (L4)	2
4. Synthesis of methyl 2,6-bis(bromomethyl)benzoate	2
5. Synthesis of methyl 2,6-bis(pyrazol-1-ylmethyl)benzoate (L5)	2
6. Synthesis of methyl 3,5-bis((1H-1,2,4-triazol-1-yl)methyl)benzoate (L6)	3
7. Aerobic oxidation of alcohols in the presence of $Pd(OAc)_2$ and L6. General procedure	5
8. Benzylic C-H oxidation in the presence of $Pd(OAc)_2$ and L6. General procedure	5
9. ¹ H-NMR and ¹³ C-NMR spectra	7
10. References	35

1. General remarks.

Commercially available reagents were used throughout without purification unless otherwise stated. ¹H and ¹³C NMR spectra were recorded on a Bruker AC-300 instrument (300 MHz for ¹H and 75.4 MHz for ¹³C) at 20 °C. Chemical shifts (δ) are given in ppm downfield from Me₄Si and are referenced as internal standard to the residual solvent (unless indicated) CDCl₃ (δ =7.26 for ¹H and δ =77.00 for ¹³C). Coupling constants, *J*, are reported in hertz (Hz). Melting points were determined in a capillary tube and are uncorrected. TLC was carried out on SiO₂ (silica gel 60 F254, Merck), and the spots were located with UV light. Flash chromatography was carried out on SiO₂ (silica gel 60, Merck, 230–400 mesh ASTM). IR spectra were recorded on a Perkin–Elmer 1600 FT and JASCO FTIR-4100 infrared spectrophotometer as thin films, and only noteworthy absorptions are reported in cm⁻¹. Drying of organic extracts during work-up of reactions was performed over anhydrous Na₂SO₄. Evaporation of solvents was accomplished with a Büchi rotatory evaporator. MS and HR-MS were measured using a Waters GCT mass spectrometer.

2. Synthesis of 2,6-dibromoisonicotinic acid.¹ A mixture of citrazinic acid (500 mg, 3.22 mmol) and phosphorous(V) oxybromide (1.48 g, 5.16 mmol) were heated at 175 °C under Ar for 5 h. After cooling, H₂O (50 mL) was added, the aqueous layer was extracted with CH₂Cl₂ (4 x 20 mL). The combined organic extracts were dried with anhydrous Na₂SO₄ and the solvent was removed *in vacuo*, obtaining 2,6-dibromoisonicotinic acid as a reddish powder (683 mg, 76%). Mp: 176-178 °C (EtOAc). ¹H-NMR (CDCl₃) $\delta_{\rm H}$: 8.05 (s, 2H, H-3, H-5). ¹³C-NMR (CDCl₃) $\delta_{\rm C}$: 127.2 (C-3, C-5), 140.6 (C-2, C-6), 142.0 (C-4), 166.8 (COOH). IR (film) $\nu_{\rm max}$: 3072, 2890, 2579, 1725, 1531. HRMS: calculated for C₆H₄NO₂Br₂: 279.8609, found 279.8617.

3. Synthesis of 3,3'-(4-carboxy-2,6-pyridinediyl)-bis[1-butyl-1*H*-imidazolium] dibromide (L4).² A solution of 2,6-dibromoisonicotinic acid (600 mg, 2.14 mmol) and 1-butylimidazole L1 (665 mg, 5.36 mmol) was stirred at 150 °C in a sealed tube for 24 h. After cooling, CH₂Cl₂ (15 mL) and Et₂O (4 mL) were added to the mixture. The resultant precipitate was collected and purified by crystallization from MeOH:Et₂O to afford 3,3'-(4-carboxy-2,6-pyridinediyl)-bis[1-butyl-1-H-imidazolium] dibromide as a brown powder (1,05 g, 93%). Mp: >300 °C (EtOAc). ¹H-NMR (MeOH-*d*₄) δ_{H} : 0.93 (t, 6H, *J* = 7.3, CH₃), 1.30-1.38 (m, 4H, NCH₂CH₂CH₂CH₃), 1.88-1.97 (m, 4H, NCH₂CH₂CH₂CH₃), 4.30 (t, 4H, *J* = 7.3, NCH₂), 8.12 (s, 2H, H-4'), 8.47 (s, 2H, H-3, H-5), 8.87 (s, 2H, H-5'), 10.53 (s, 1H, H-2'). ¹³C-NMR (MeOH-*d*₄) δ_{C} : 13.4 (CH₃), 18.9 (NCH₂CH₂CH₂CH₃), 31.1 (NCH₂CH₂CH₂CH₃), 49.5 (NCH₂), 113.6 (C-3, C-5), 119.5 (C-5'), 123.7 (C-4'), 136.3 (C-2'), 145.2 (C-4), 159.1 (C-2, C-6), 163.3 (COOH). IR (film) ν_{max} : 2359, 1533, 1220. HRMS: Calculated for: C₂₀H₂₇Br₂N₅O₂ 527.0531, found: 527.0531.

4. Synthesis of methyl 2,6-bis(bromomethyl)benzoate.³ NBS (13 g, 73.08 mmol) was added in four equal portions during 31 h to a solution of methyl 3,5-dimethylbenzoate (1.5 g, 9.13 mmol) in refluxing CCl₄ (55.5 mL), each addition being followed by a few milligrams of benzoyl peroxide. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled to room temperature and filtered. The filtrate was washed with a saturated aqueous solution of NaHCO₃ (30 mL) and brine (30 mL), dried over anhydrous Na₂SO₄, and evaporated *in vacuo*. The residue was dissolved in anhydrous THF (20 mL), and diethyl phosphate (13.8 mL, 1.07 mmol) and *i*Pr₂NEt (18.6 mL, 1.07 mmol) were added at 0 °C under Ar. The stirred mixture was allowed to warm to room temperature and stirred for 2 days (the reaction was monitored by ¹H-NMR), and then poured onto ice/water and extracted with Et₂O (4 x 30 mL). The organic layers were washed with 1M HCl (1 x 10 mL) and brine (1 x 10 mL), dried over anhydrous Na₂SO₄, and evaporated *in vacuo* to give a residue which was purified by flash chromatography on silicagel using Et₂O as eluent. Methyl 3,5-bis(bromomethyl)benzoate was obtained as a yellow powder (1.46 g, 68%). Mp: 95-97 °C (EtOAc). ¹H-NMR (CDCl₃) $\delta_{\rm E}$: 31.8 (CH₃), 52.4 (CH₂), 129.9 (C-3, C-5), 131.4 (C-4), 133.8 (C-1), 138.9 (C-2, C-6), 165.9 (CO). IR (film) ν_{max} : 1728, 1604, 1436, 1318, 1231, 1108, 1026.

5. Synthesis of methyl 2,6-bis(pyrazol-1-ylmethyl)benzoate (L5).⁴ A mixture of methyl 2,6-bis(bromomethyl)benzoate (600 mg, 1.86 mmol), pyrazole L2 (2.79 mg, 4.09 mmol), and Cs₂CO₃ (2.37 g, 7.27 mmol) was refluxed in dry acetonitrile (45 mL) under argon for 2 h. After cooling, the resultant solution was filtered and water (30 mL) was added. The aqueous layer was extracted with EtOAc (2 x 40 mL). The combined organic extracts were dried over anhydrous Na₂SO₄ and the solvent was removed *in vacuo* to give a residue which was purified by gradient flash chromatography on silicagel (Hexane:EtOAc 7:3 \rightarrow EtOAc \rightarrow EtOAc:MeOH 9.5:0.5). Methyl 2,6-bis(pyrazol-1-ylmethyl)benzoate was obtained as a white powder (570 mg, 99%). Mp: 62-63 °C (Hexane: EtOAc). ¹H-NMR (CDCl₃) δ_{H} : 3.84 (s, 3H, CH₃), 5.29 (s, 4H, CH₂), 6.25 (s, 2H, H-4'), 7.17 (s, 1H, H-1), 7.36 (d, 2H, *J* = 1.4, H-3'), 7.51 (d, 2H, *J* = 2.0, H-3, H-5), 7.77 (s, 2H, H-5'). ¹³C-NMR (CDCl₃) δ_{C} : 52.3 (CH₃), 55.2 (CH₂), 106.3 (C-4'), 128.3 (C-3, C-5), 129.5 (C-5'), 131.1 (C-4), 131.3 (C-1), 137.9 (C-2, C-6), 139.9 (C-3'), 166.2 (CO). IR (film) v_{max}: 1720, 1428, 1303, 1213, 772 HRMS: Calculated for C₁₆H₁₆N₄O₂ 296.1273, found: 296.1275

6. Synthesis of methyl 3,5-bis((1*H*-1,2,4-triazol-1-yl)methyl)benzoate (L6).⁵ A mixture of methyl 3,5-bis(bromomethyl)benzoate (600 mg, 1.86 mmol), 1*H*-1,2,4-triazole L3 (283 mg, 4.09 mmol) and Cs₂CO₃ (2.37 mg, 7.27 mmol) was refluxed in dry acetonitrile (45 mL) under Ar for 3 h. After cooling, the resultant solution was filtered and water (30 mL) was added. The aqueous layer was extracted with EtOAc (3 X 40 mL). The combined organic extracts were dried with anhydrous Na₂CO₃ and the solvent was removed *in vacuo* to give a residue which was purified by silica gel chromatography eluting with hexane/EtOAc 7/3 \rightarrow EtOAc \rightarrow EtOAc/MeOH 9.5/0.5 to afford methyl 3,5-bis((1*H*-1,2,4-triazol-1-yl)methyl)benzoate **3** as a yellowish powder (510 mg, 92%). Mp: 105-107 °C (EtOAc). ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 3.89 (3H, s, CH₃), 5.50 (4H, s, CH₂), 7.51 (1H, s, H-2), 7.92 (2H, s, H-4, H-6), 8.00 (2H, s, H-3'), 8.59 (2H, s, H-5'); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 53.9 (CH₂), 123.9 (C-4'), 128.6 (C-5, C-2), 130.2 (C-4, C-6), 134.2 (C-5'), 135.7 (C-1, C-2); IR (film) v_{max}(cm⁻¹) : 1716, 1508, 1428, 1314, 1213, 1142, 1020. HR-MS: Calculated for C₁₄H₁₄N₆O₂ 299.1256, found 299.1248.

7. Aerobic oxidation of alcohols in the presence of $Pd(OAc)_2$ and L6. General procedure. A round bottom flask equipped with a magnetic stirrer bar was charged with the alcohol (1 mmol), NaOAc (8.0 mg, 0.1 mmol), Pd(OAc)_2 (20 µL of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol), L6 (20 µL of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol), L6 (20 µL of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol) and PEG 400 (1 mL) at room temperature. The system was purged with molecular oxygen, and an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 120 °C under stirring for 48 h. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled to room temperature and water was added (50 mL aprox.). The resulting solution was acidified with HCl 1M (pH≈1-2) and extracted with Et₂O (4 x 6 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and evaporated *in vacuo* to give a residue which was purified by flash column chromatography using hexane:ethyl acetate as eluent. By this procedure the following ketones and acids were prepared:

Acetophenone.⁶ (119 mg, 99%) ¹H-NMR (CDCl₃) δ_{H} : 2.61 (s, 3H, CH₃), 7.42-7.63 (m, 3H, H_{arom}), 7.96 (t, J= 8, 2H, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 26.5 (CH₃), 128.2 (C_{arom-H}), 128.5 (C_{arom-H}), 133.0 (C_{arom}), 137.07 (C_{q-arom}), 198.1 (CO); LRMS (m/z): 120.1 (M⁺).

1-Phenyl-1-propanone.⁷ (122 mg, 91%) ¹H-NMR (CDCl₃) δ_{H} : 1.22 (t, 3H, J = 7.2, CH₃), 3.0 (q, 2H, J = 7.3, CH₂), 7.45 (t, 2H, J = 6.9, H_{arom}), 7.54 (t, 1H, J = 6.6, H_{arom}), 7.96 (d, 2H, J = 8.3, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 8.2 (CH₃), 31.8 (CH₂), 127.9 (C_{arom-H}), 128.6 (C_{arom-H}), 132.9 (C_{arom-H}), 133.9 (C_{q-arom}), 200.8 (CO); LRMS (m/z): 134.1 (M⁺).

2,2-Dimethyl-1-phenylpropanone.⁷ (159 mg, 98%) ¹H-NMR (CDCl₃) δ_{H} : 1.35 (s, 9H, CH₃), 7.30 (dd, 2H, $J = 5.0, 2.3, \text{H}_{\text{arom}}$), 7.44 (dd, 1H, $J = 5.1, 1.5, \text{H}_{\text{arom}}$), 7.66-7.72 (m, 2H, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 28.0 (CH₃), 44.2 (C_q), 127.7 (C_{arom-H}), 127.8 (C_{arom-H}), 128.0 (C_{arom-H}), 130.8 (C_{arom-H}), 160.4 (C_{q-arom}), 209.3 (CO); LRMS (m/z): 162.1 (M⁺).

Benzoylcyanide.⁸ (71 mg, 54%) ¹H-NMR (CDCl₃) δ_{H} : 7.47 (m, 2H, H_{arom}), 7.59 (m, 1H, H_{arom}), 8.13 (m, 2H, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 115.2 (CN), 127.2 (C_{arom-H}), 128.5 (C_{arom-H}), 135.0 (C_{arom-H}), 140.1 (C_{q-arom}), 199.1 (CO); LRMS (m/z): 131.1 (M⁺).

2-Oxo-phenylacetic acid.⁹ (129 mg, 86%) ¹H-NMR (CDCl₃) δ_{H} : 7.55 (t, 2H, J = 7.8, H_{arom}), 7.72 (d, 1H, J = 7.6, H_{arom}), 7.8.35 (d, 2H, J = 7.6, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 128.3 (C_{arom-H}), 129.2 (C_{arom-H}), 130.0 (C_{arom-H}), 133.6 (C_{q-arom}), 160.9 (COOH), 171.6 (CO); LRMS (m/z): 150.1 (M⁺).

1-(2-Methoxyphenyl)ethanone.¹⁰ (132 mg, 88%) ¹H-NMR (CDCl₃) δ_{H} : 2.60 (s, 3H, CH₃), 3.89 (s, 3H, OCH₃), 6.91-7.03 (m, 2H, H_{arom}), 7.44 (t, 1H, J = 9.2, H_{arom}), 7.71 (d, 1H, J = 7.7, CH_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 31.7 (CH₃), 55.4 (OCH₃), 111.5 (C_{arom-H}), 120.5 (C_{arom-H}), 126.3 (C_{q-arom}), 130.3 (C_{arom-H}), 133.6 (C_{arom-H}), 158.8 (C_{q-arom}), 199.8 (CO); LRMS (m/z): 150.1 (M⁺).

1-(*p***-Tolyl)ethanone**.⁸ (114 mg, 85%) ¹H-NMR (CDCl₃) δ_{H} : 2.39 (s, 3H, CH₃), 2.55 (s, 3H, CH₃), 7.24 (d, 2H, J = 8.2, H_{arom}), 7.84 (d, 2H, J = 8.2, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 21.6 (CH₃), 26.5 (CH₃), 128.5 (C_{arom-H}), 129.2 (C_{arom-H}), 134.7 (C_{q-arom}), 143.8 (C_{q-arom}), 197.8 (CO); LRMS (m/z): 134.1 (M⁺).

4-Chloroacetophenone.¹¹ (129 mg, 84%) ¹H-NMR (CDCl₃) δ_{H} : 2.58 (s, 3H, CH₃), 7.43 (d, 2H, J = 8.8, H_{arom}), 7.89 (d, 2H, J = 8.8, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} (ppm): 26.5 (CH₃), 128.9 (C_{arom-H}), 129.7 (C_{arom-H}), 135.4 (C_{q-arom}), 139.6 (C_{q-arom}), 196.8 (CO); LRMS (m/z): 154.1 (M⁺).

Indanone.⁷ (128 mg, 97%) ¹H-NMR (CDCl₃) δ_{H} : 2.67 (t, 2H, J = 5.8, CH₂), 3.13 (t, 2H, J = 5.3, CH₂), 7.37 (t, 1H, J = 7.5, H_{arom}), 7.48 (d, 1H, J = 7.5, H_{arom}), 7.59 (t, 1H, J = 7.5, H_{arom}), 7.76 (d, 1H, J = 7.5, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 25.8 (CH₂), 36.2 (CH₂), 123.7 (C_{arom-H}), 126.7 (C_{arom-H}), 127.3 (C_{arom-H}), 134.6 (C_{arom-H}), 137.1 (C_{q-arom}), 155.2 (C_{q-arom}), 207.1 (CO); LRMS (m/z): 132.1 (M⁺).

Fluorenone.¹² (169 mg, 94%) ¹H-NMR (CDCl₃) δ_{H} : 7.20-7.25 (m, 2H, H_{arom}), 7.36-7.44 (m, 4H, H_{arom}), 7.59 (dd, 2H, J = 0.8, 7.4, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 120.1 (C), 124.0 (C_{arom-H}), 128.8 (C_{arom-H}), 133.9 (C_{q-arom}), 134.5 (C_{arom-H}), 144.18 (C_{q-arom}), 193.7 (CO); LRMS (m/z): 180.2 (M⁺).

Xanthenone.⁸ (176 mg, 90%) ¹H-NMR (CDCl₃) δ_{H} : 7.31 (t, 2H, J = 7.2, H_{arom}), 7.41 (d, 2H, J = 8.4, H_{arom}), 7.65 (t, 2H, J = 6.9, H_{arom}), 8.27 (d, 2H, J = 9.7, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 117.9 (C_{arom-H}, 121.7 (C_{arom-H}), 123.9 (C_{arom-H}), 126.6 (C_{arom-H}), 134.8 (C_{arom-H}), 156.1 (C_{q-arom}), 177.2 (CO); LRMS (m/z): 196.1 (M⁺).

Benzophenone7 (166 mg, 91%) ¹H-NMR (CDCl₃) δ_{H} : 7.42-7.52 (m, 4H, H_{arom}), 7.54-7.62 (m, 2H, H_{arom}), 7.79-7.82 (m, 4H, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 128.2 (C_{arom}), 129.94 (C_{arom}), 132.3 (C_{arom}), 132.5 (C_{q-arom}), 196.6 (CO); LRMS (m/z): 182.1 (M⁺).

2-Methylbenzophenone.¹³ (145 mg, 74%) ¹H-NMR (CDCl₃) δ_{H} : 2.34 (s, 3H, CH₃), 7.25-7.33 (m, 3H, H_{arom}), 7.38 (d, 1H, J = 7.5, H_{arom}), 7.45 (t, 2H, J = 7.5, H_{arom}), 7.58 (t, 1H, J = 8, H_{arom}), 7.81 (d, 2H, J = 8.3Hz, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 19.9 (CH₃); 125.2 (C_{arom-H}), 128.5 (C_{arom-H}), 130.1 (C_{arom-H}), 131.0 (C_{arom-H}), 133.1 (C_{arom-H}), 136.7 (C_{q-arom}), 137.8 (C_{q-arom}), 138.6 (C_{q-arom}), 198.6 (CO); LRMS (m/z): 196.2 (M⁺).

Benzil.¹⁴ (from benzoin 204 mg, 97%; from hydrobenzoin 199 mg, 95%) ¹H-NMR (CDCl₃) δ_{H} : 7.50-7.56 (m, 4H, H_{arom}), 7.64-7.70 (m, 2H, H_{arom}), 7.94-8.01 (m, 4H, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 129.0 (C_{arom-H}), 129.9 (C_{arom-H}), 133.0 (C_{q-arom}), 134.9 (C_{arom-H}), 194.6 (CO); LRMS (m/z): 210.1 (M⁺).

Desoxybenzoin.¹⁵ (184 mg, 94%) ¹H-NMR (CDCl₃) δ_{H} : 4.30 (s, 2H, CH₂), 7.24-7.29 (m, 3H, H_{arom}), 7.32-7.36 (m, 2H, H_{arom}), 7.45-7.49 (m, 2H, H_{arom}), 7.55-7.59 (m, 2H, H_{arom}), 8.02-8.05 (m, 2H, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 45.5 (CH₂), 126.9 (C_{arom-H}), 126.9 (C_{arom-H}), 128.5 (C_{q-arom}), 128.6 (C_{arom-H}), 128.7 (C_{arom-H}), 129.5 (C_{arom-H}), 133.17 (C_{arom-H}), 134.5 (C_{q-arom}), 136.6 (C_{q-arom}), 197.6 (CO); LRMS (m/z): 196.1 (M⁺).

Benzoic acid.¹⁶ (101 mg, 83%) ¹H-NMR (CDCl₃) δ_{H} : 7.49 (t, 2H, J = 7.5, H_{arom}), 7.63 (t, 1H, J = 6.8, H_{arom}), 8.15 (d, 2H, J = 8.4, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 128.4 (C_{arom-H}), 129.6 (C_{q-arom}), 130.1 (C_{arom-H}), 133.7 (C_{arom-H}), 172.1 (COOH); LRMS (m/z): 122.1 (M⁺).

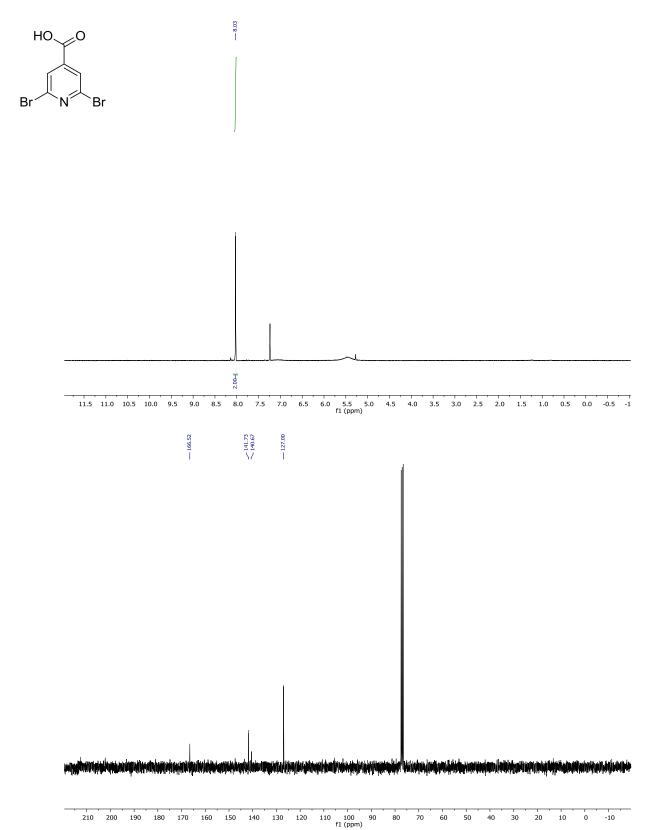
4-Isopropylbenzoic acid.¹⁷ (154 mg, 94%) ¹H-NMR (CDCl₃) δ_{H} : 1.29 (d, 6H, J = 6.9, CH₃), 2.99 (q, 1H, J = 6.9, CH), 7.34 (d, 2H, J = 8.4, H_{arom}), 8.06 (d, 2H, J = 8.3, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 23.7 (CH₃), 34.2 (CH), 126.6 (C_{arom-H}), 126.9 (C_{q-arom}), 130.4 (C_{arom-H}), 155.3 (C_{q-arom}), 172.4 (COOH); LRMS (m/z): 164.1 (M⁺).

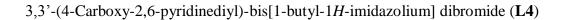
4-Ethylbenzoic acid.¹⁶ (129 mg, 86%) ¹H-NMR (CDCl₃) δ_{H} : 1.28 (t, 3H, J = 7.3, CH₃), 2.73 (q, 2H, J = 7.3, CH₂), 7.31 (d, 2H, J = 8.1, H_{arom}), 8.05 (d, 2H, J = 8.3, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 15.1 (CH₃), 29.0 (CH₂), 126.8 (C_{q-arom}), 128.0 (C_{arom-H}), 130.4 (C_{arom-H}), 150.8 (C_{q-arom}), 172.4 (COOH); LRMS (m/z): 150.1 (M⁺).

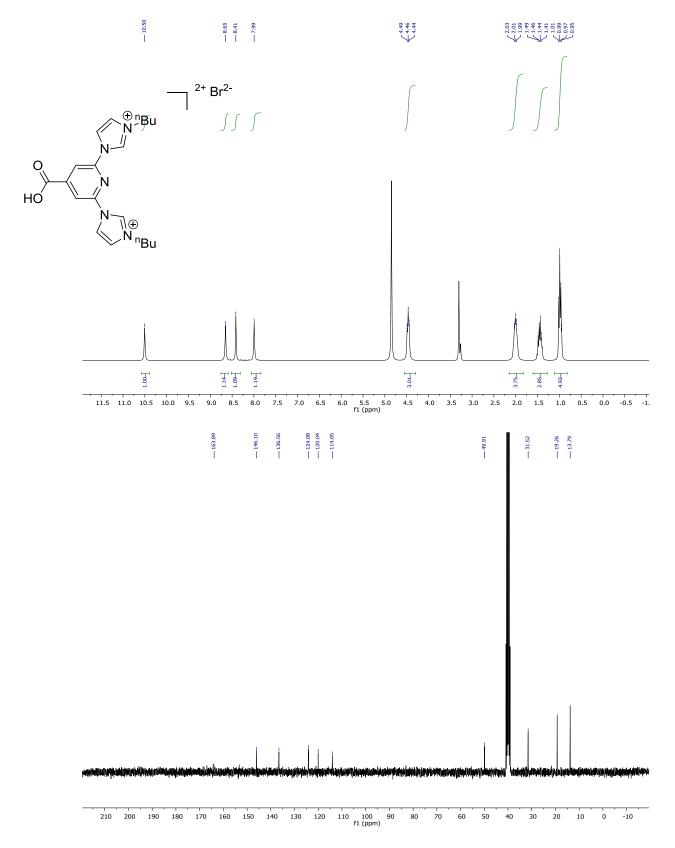
4-Methylbenzoic acid.¹⁶ (113 mg, 83%) ¹H-NMR (CDCl₃) δ_{H} : 2.44 (s, 3H, CH₃), 7.28 (d, 2H, J = 8.4, H_{arom}), 8.02 (d, 2H, J = 8.2, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 21.7 (CH₃), 127.1 (C_{q-arom}), 129.1 (C_{arom-H}), 130.2 (C_{arom-H}), 144.6 (C_{q-arom}), 172.2 (COOH); LRMS (m/z): 136.1 (M⁺).

4-(Trifluoromethyl)benzoic acid.¹⁸ (144 mg, 76%) ¹H-NMR (CDCl₃) δ_{H} : 7.70 (d, 2H, J = 7.7, H_{arom}), 8.16 (d, 2H, J = 7.3, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 123.2 (d, J = 272, CF₃), 127.4 (d, J = 3.7, C_{arom-H}), 132.1 (C_{arom-H}), 135.5 (d, J = 32.8, C_{q-arom}), 136.2 (C_{q-arom}), 168.6 (COOH); LRMS (m/z): 190.0 (M⁺).

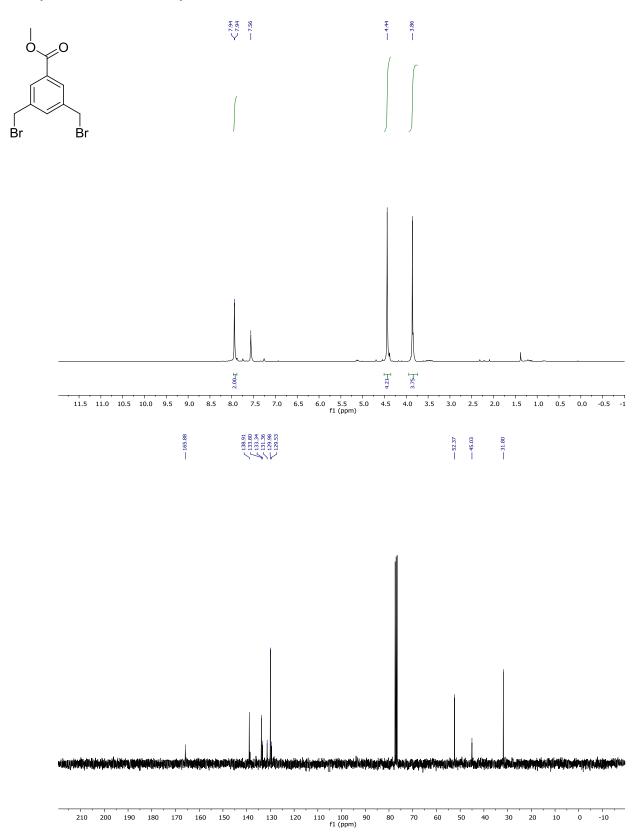
3-Phenoxybenzoic acid.¹⁸ (175 mg, 82%) ¹H-NMR (CDCl₃) δ_{H} : 7.03 (2H, d, J = 7.7, H_{arom}), 7.15 (1H, t, J = 7.3, H_{arom}), 7.26 (1H, t, J = 3.8, H_{arom}), 7.38 (3H, dd, J = 13.3, 5.6, H_{arom}), 7.44 (1H, d, J = 8, H_{arom}), 7.71 (1H, s, H_{arom}), 7.84 (1H, d, J = 7.7, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 119.2 (C_{arom-H}), 119.8 (C_{arom-H}), 123.9 (C_{arom-H}), 124.8 (C_{arom-H}), 129.9 (C_{arom-H}), 131.0 (C_{q-arom}), 156.5 (C_{arom-H}), 157.6 (C_{arom-H}), 160.5 (C_{q-arom}), 160.9 (C_{q-arom}), 171.0 (COOH); LRMS (m/z): 214.0 (M⁺).

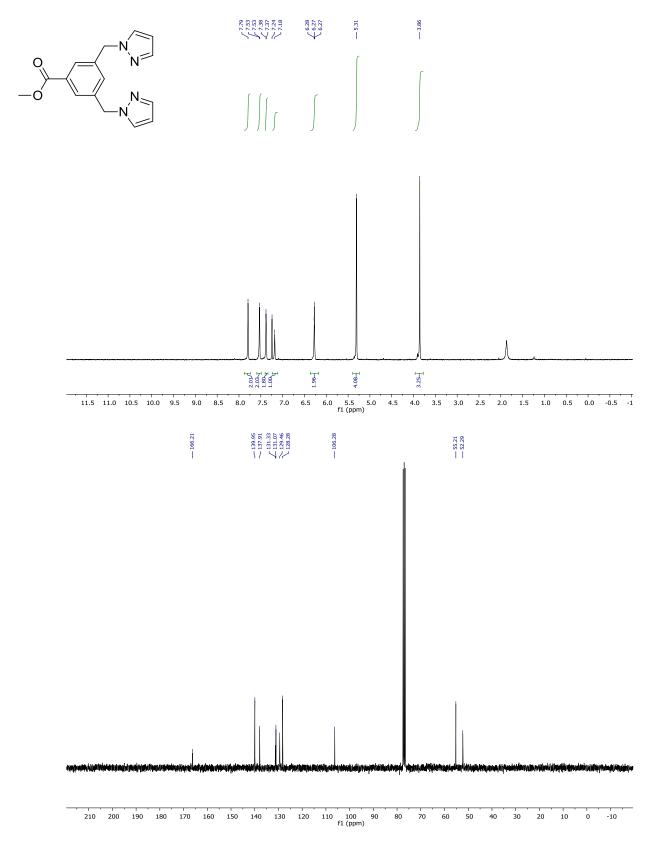

3-Methoxybenzoic acid.¹⁹ (138 mg, 91%) ¹H-NMR (CDCl₃) δ_{H} : 3.86 (s, 3H, OCH₃), 7.15 (dd, 1H, J = 7.4, 1.8, H_{arom}), 7.37 (t, 1H, J = 8.0, H_{arom}), 7.62 (s, 1H, H_{arom}), 7.72 (d, 1H, J = 7.6, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 55.4 (OCH₃), 114.4 (C_{arom-H}), 120.4 (C_{arom-H}), 122.7 (C_{arom-H}), 129.5 (C_{arom-H}), 130.6 (C_{q-arom}), 159.6 (C_{q-arom}), 172.1 (COOH); LRMS (m/z): 152.0 (M⁺).

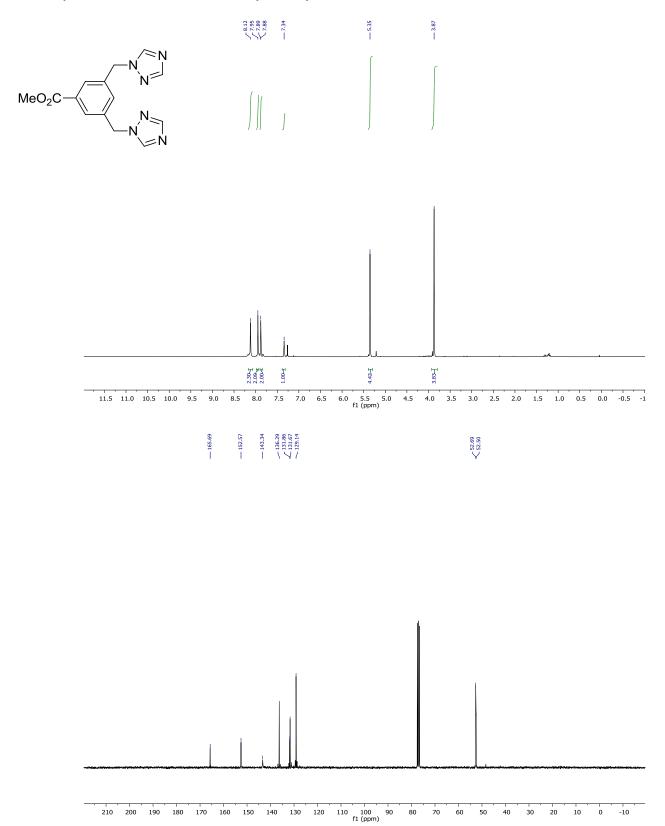

8. Benzylic C-H oxidation in the presence of Pd(OAc)₂ and L6. General procedure. A round bottom flask equipped with a magnetic stirrer bar was charged with the methylene compound (1 mmol), NaOAc (8.0 mg, 0.1 mmol), Pd(OAc)₂ (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol), 6 (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol), 6 (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol) and PEG 400 (1 mL) at room temperature. The system was purged with molecular oxygen, and an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 120 °C under stirring for 48 h. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled to room temperature and water was added (50 mL aprox.). The resulting solution was acidified with HCl 1M (pH≈1-2) and extracted with Et₂O (4 x 6 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and evaporated *in vacuo* to give a residue which was purified by flash column chromatography using hexane:ethyl acetate as eluent. By this procedure the following ketones were prepared:

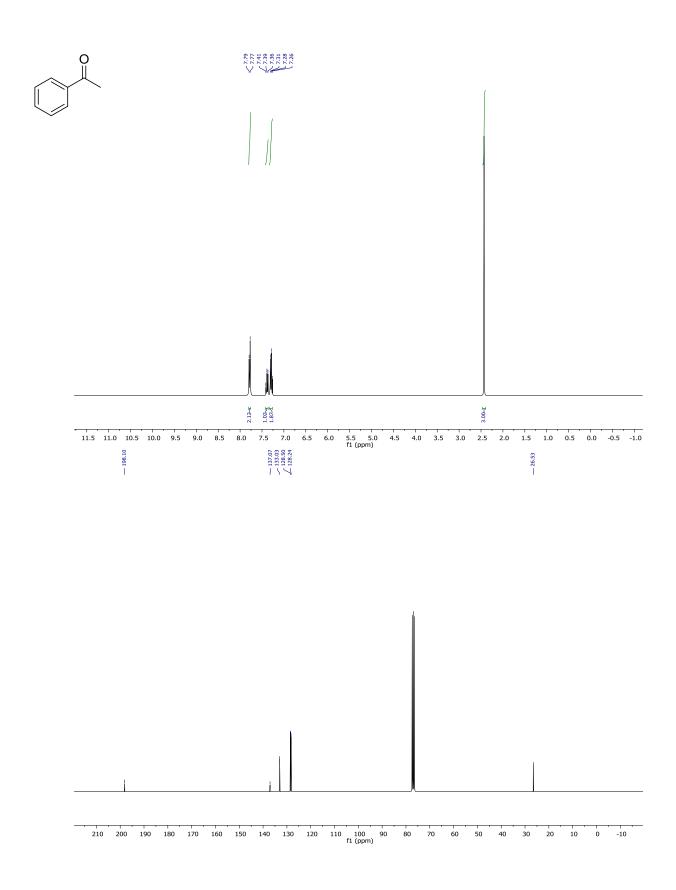

Acetophenone.⁶ (114 mg, 95%) **Benzil.**¹² (204 mg, 97%) **Xanthenone.**⁸ (190 mg, 97%) **Fluorenone**.⁸ (175 mg, 97%) **Anthraquinone**.⁹ (185 mg, 89%) ¹H-NMR (CDCl₃) δ_{H} : 7.79-7.82 (m, 2H, CH_{arom}), 8.30-8.33 (m, 2H, CH_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 127.2 (C_{arom-H}), 133.5 (C_{q-arom}), 134.4 (C_{arom-H}), 183.2 (CO); LSMR (m/z): 208.1 (M⁺). **Benzophenone**.⁷ (175 mg, 96%)

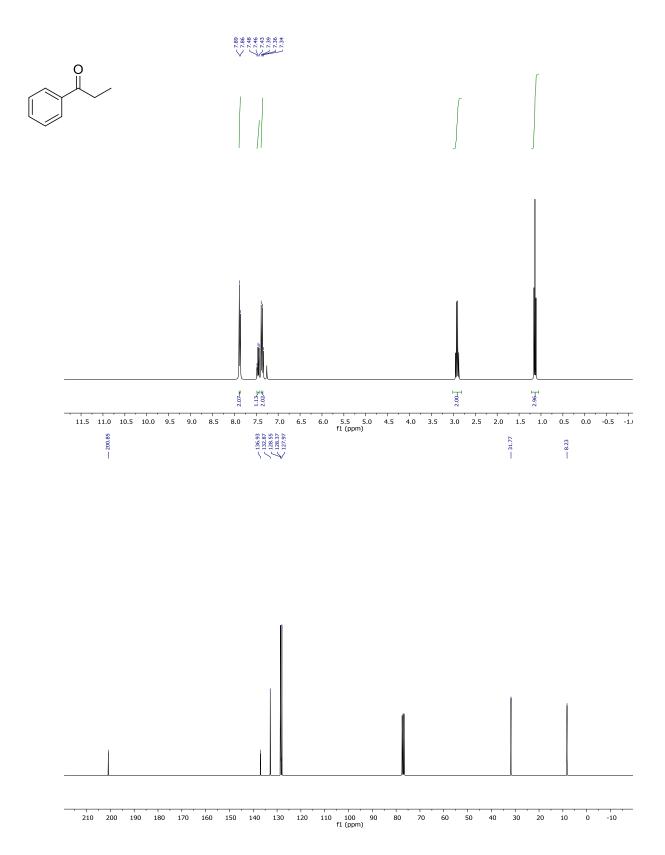
9. ¹H-NMR and ¹³C-NMR spectra

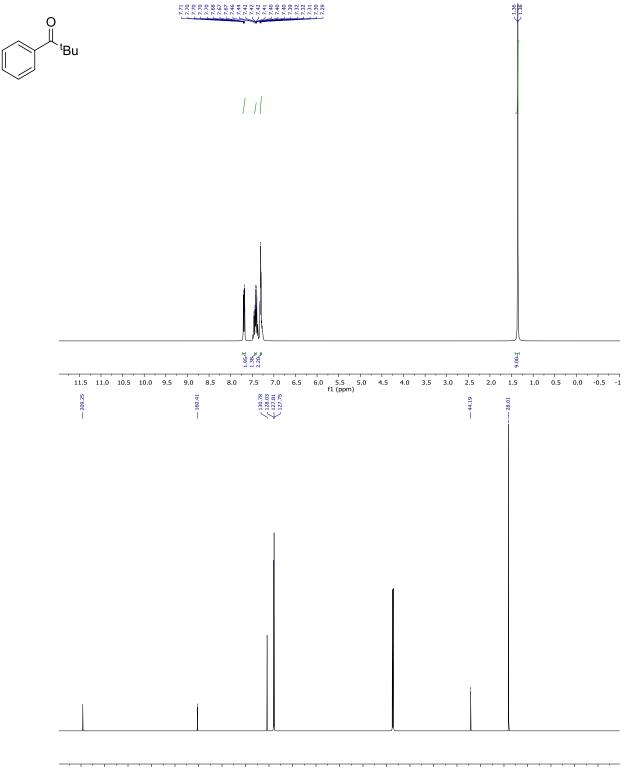

2,6-Dibromoisonicotinic acid



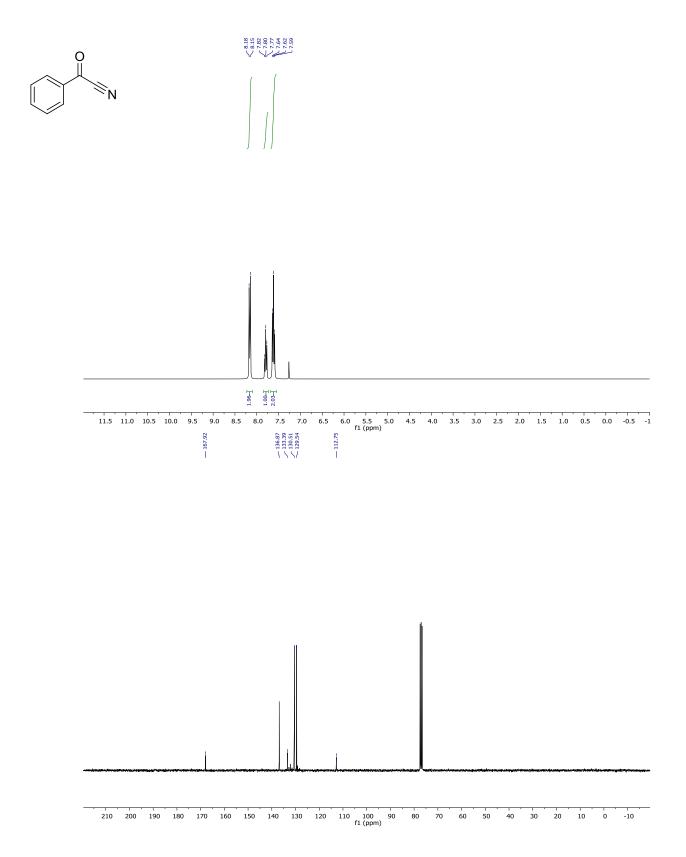

- Methyl 2,6-bis(bromomethyl)benzoate.


- Methyl 2,6-bis(pyrazol-1-ylmethyl)benzoate (L5).

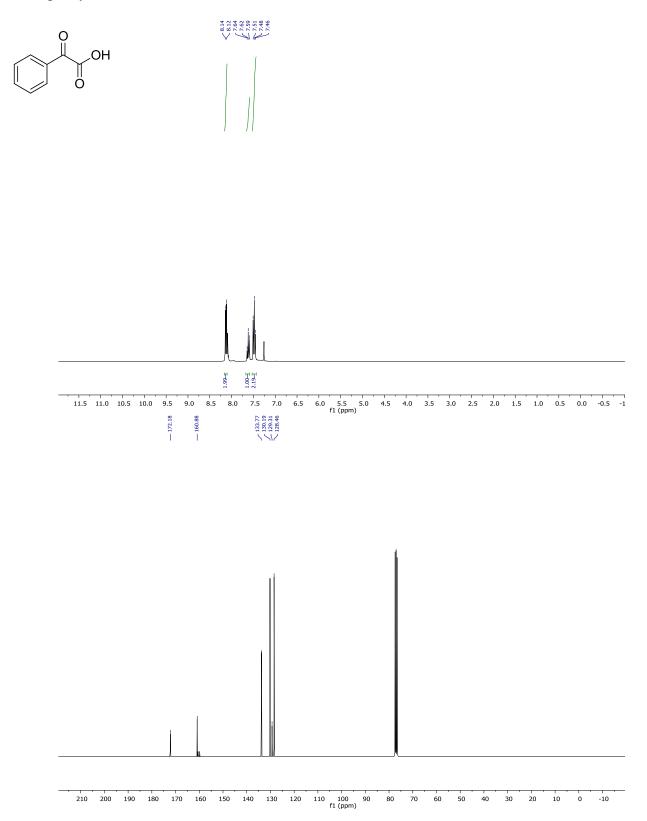

- Methyl 3,5-bis((1H-1,2,4-triazol-1-yl)methyl)benzoate (L6)


- Acetophenone

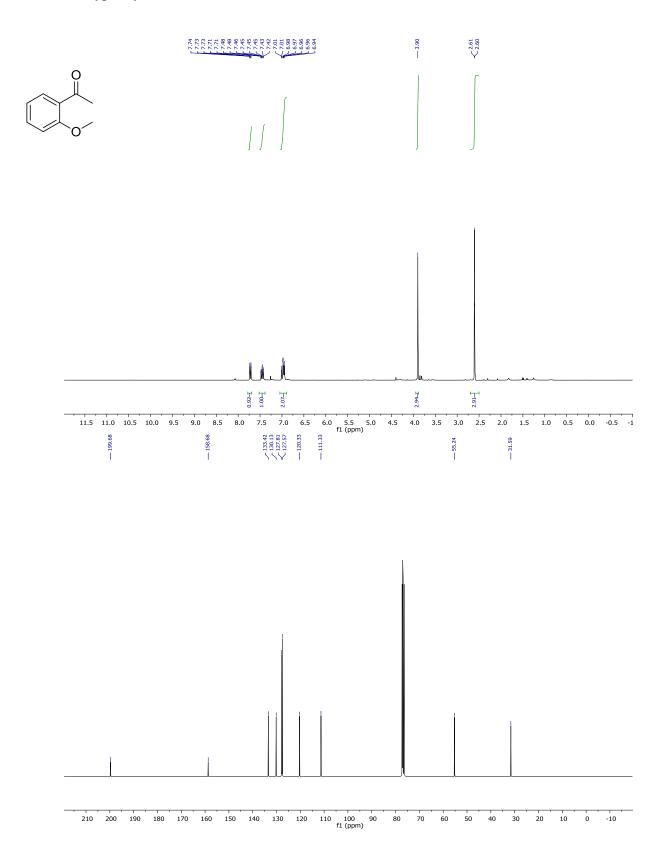
- 1-Phenyl-1-propanone

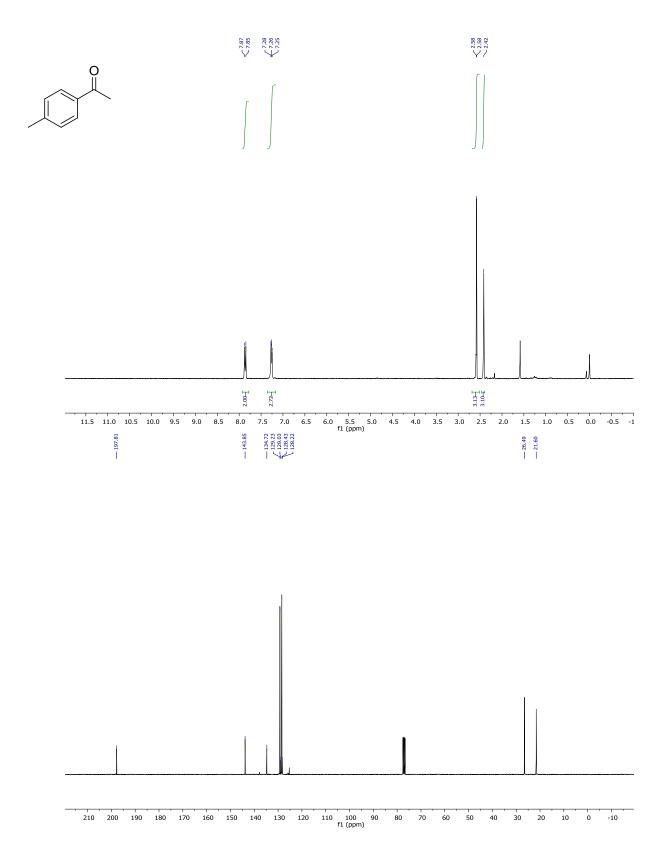


- 2,2-Dimethyl-1-phenylpropanone

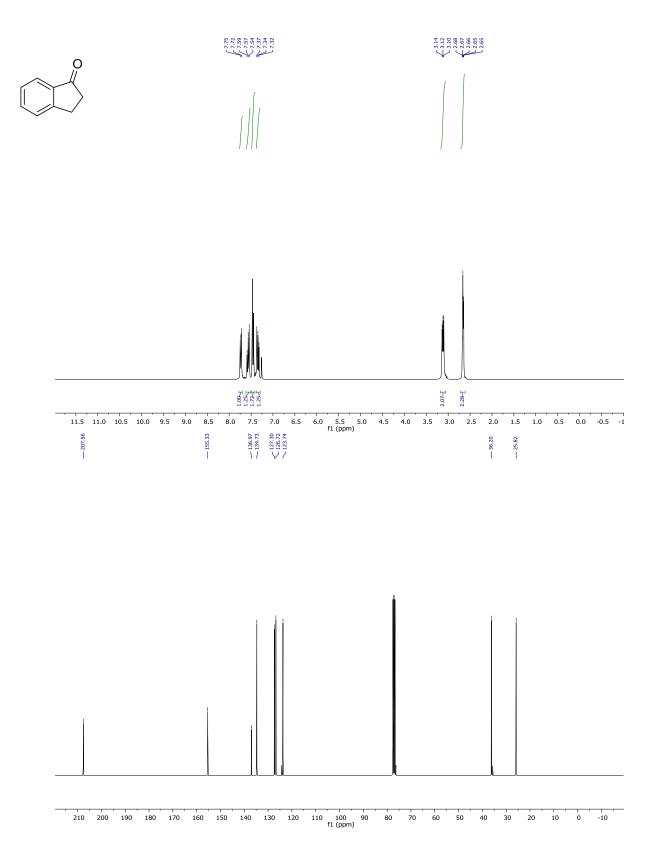


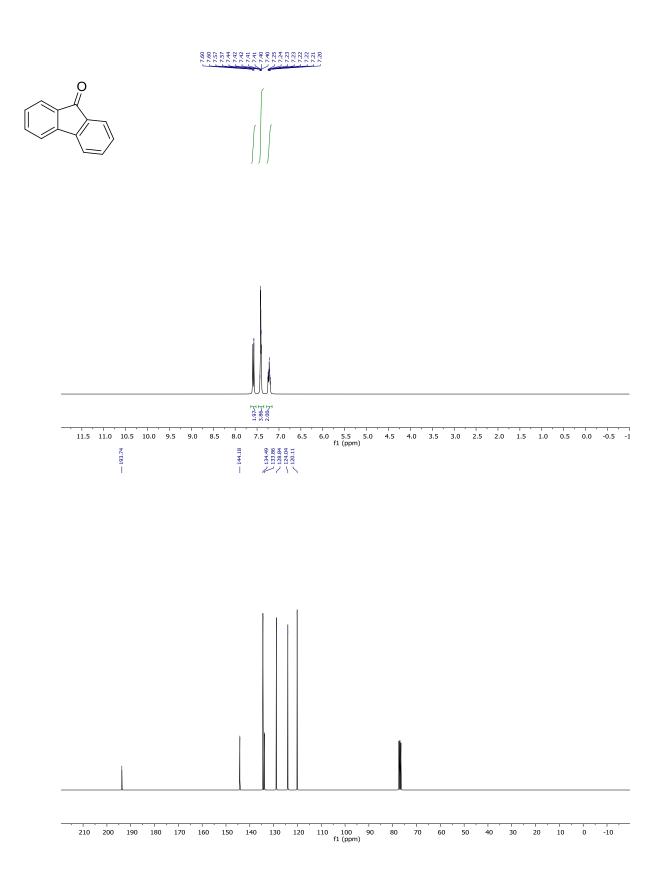
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

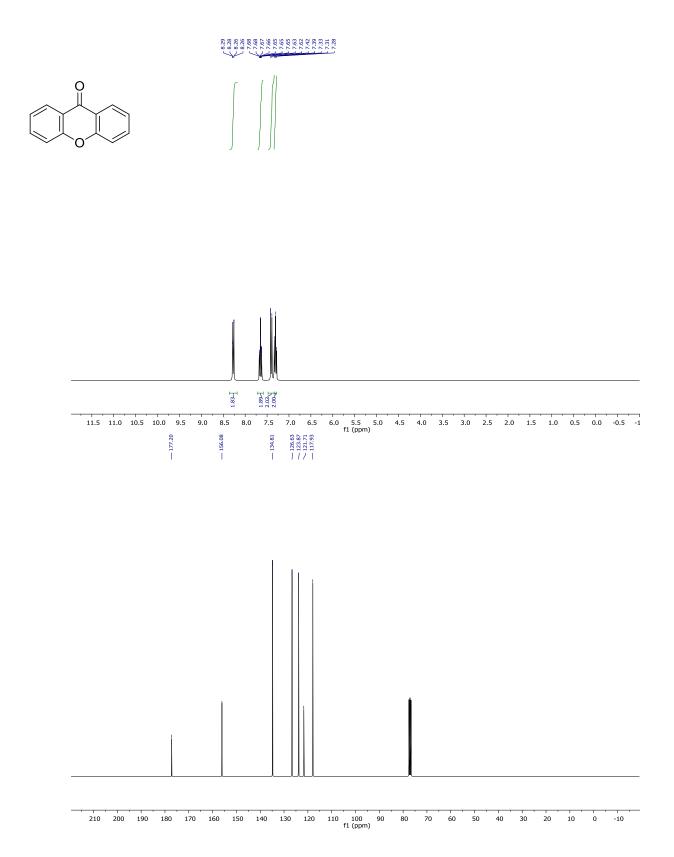

- Benzoylcyanide

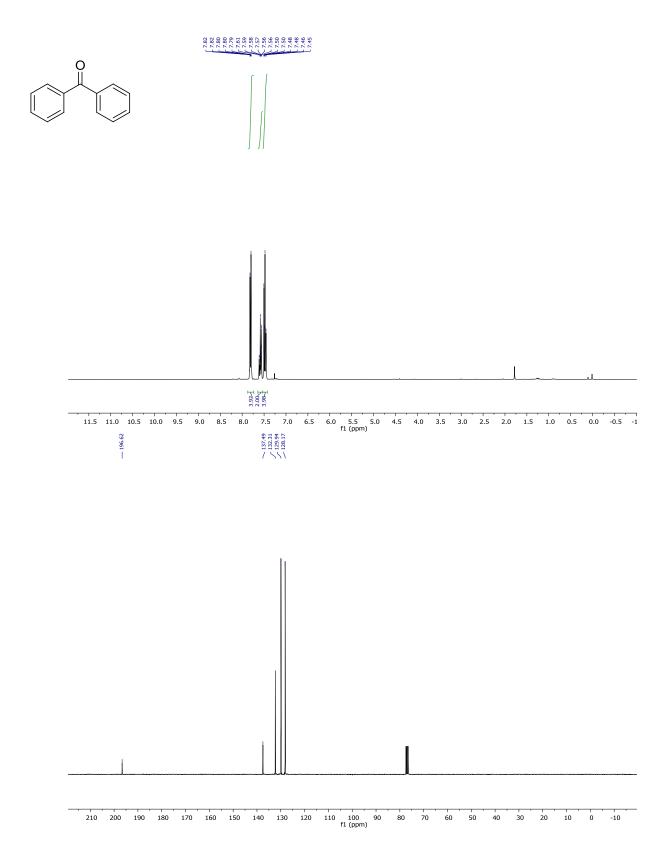

-2-Oxo-phenylacetic acid

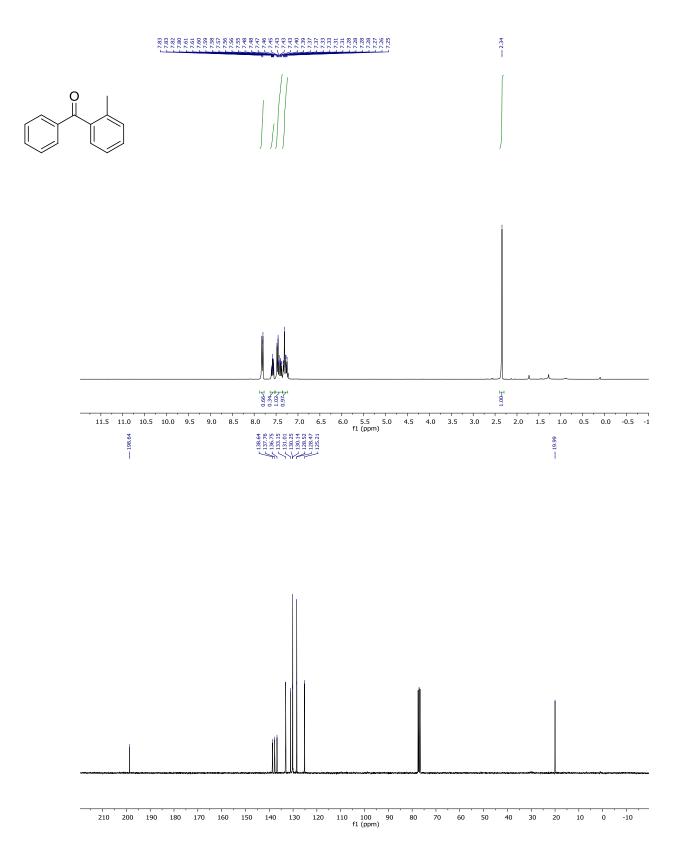
- 1-(2-Methoxyphenyl)ethanone

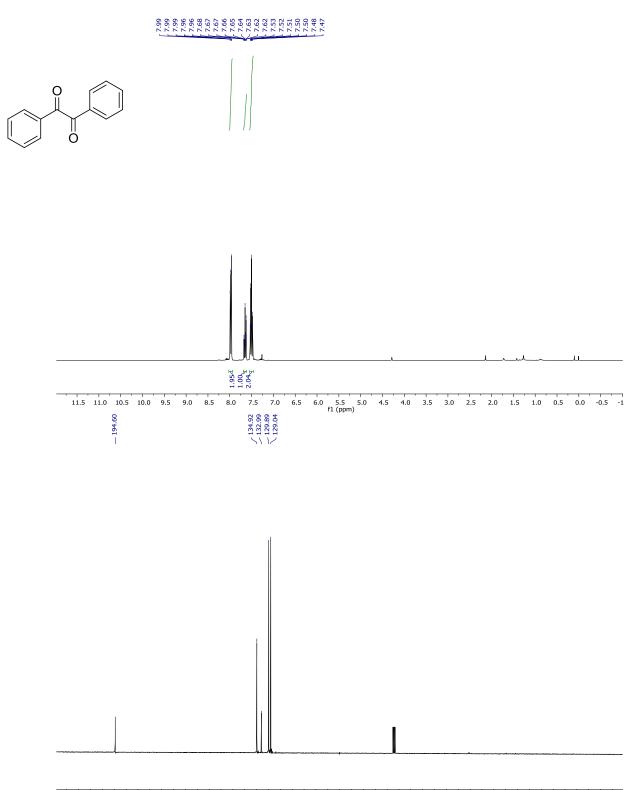

- 1-(p-Tolyl)ethanone

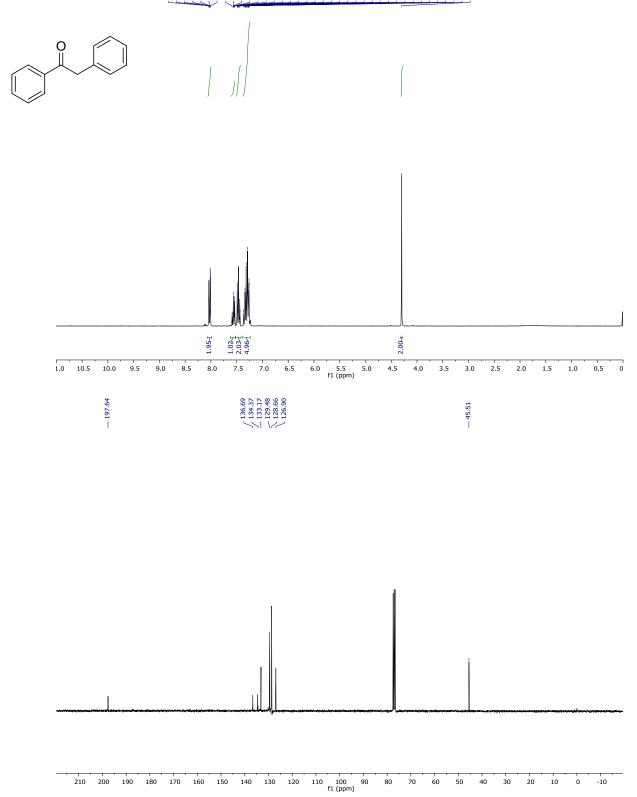

- 4-Chloroacetophenone

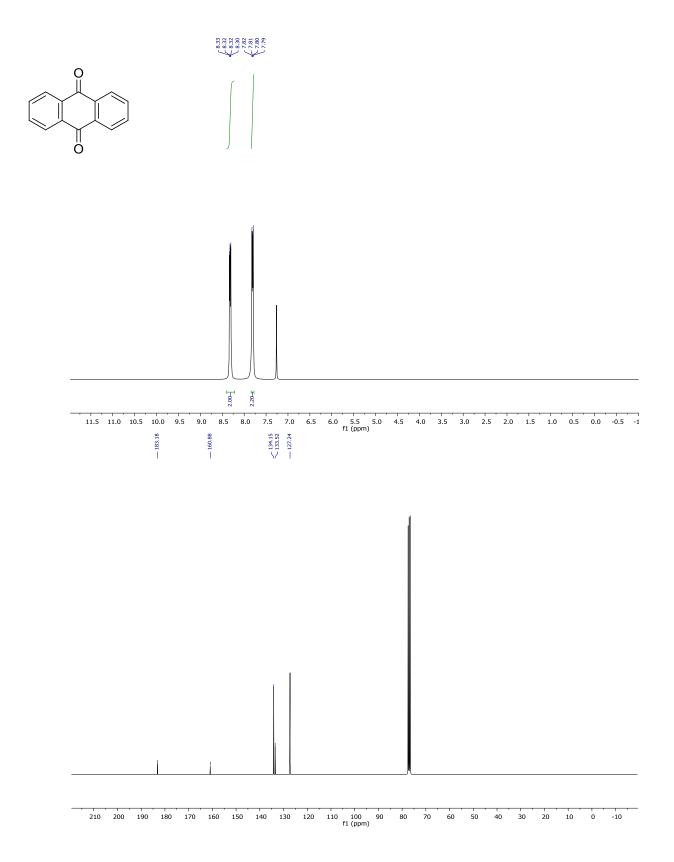

- Indanone

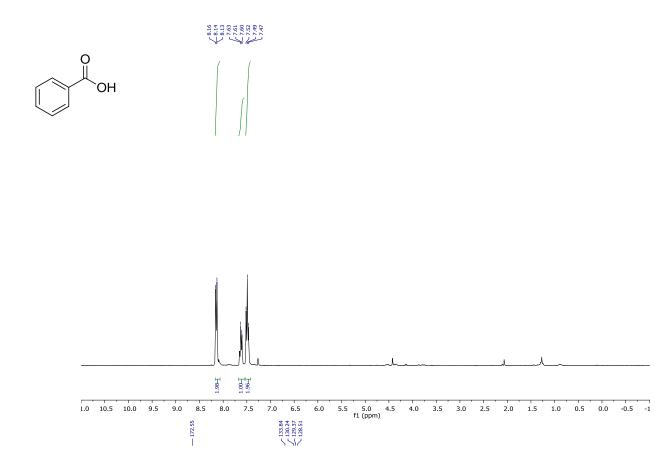

- Fluorenone

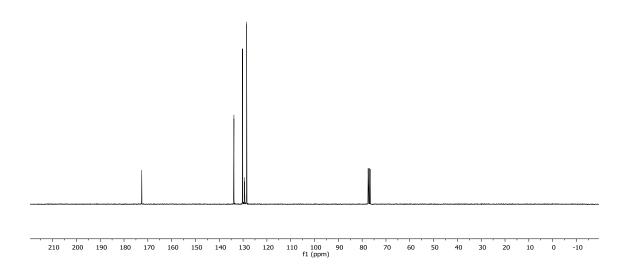

- Xanthenone


- Benzophenone

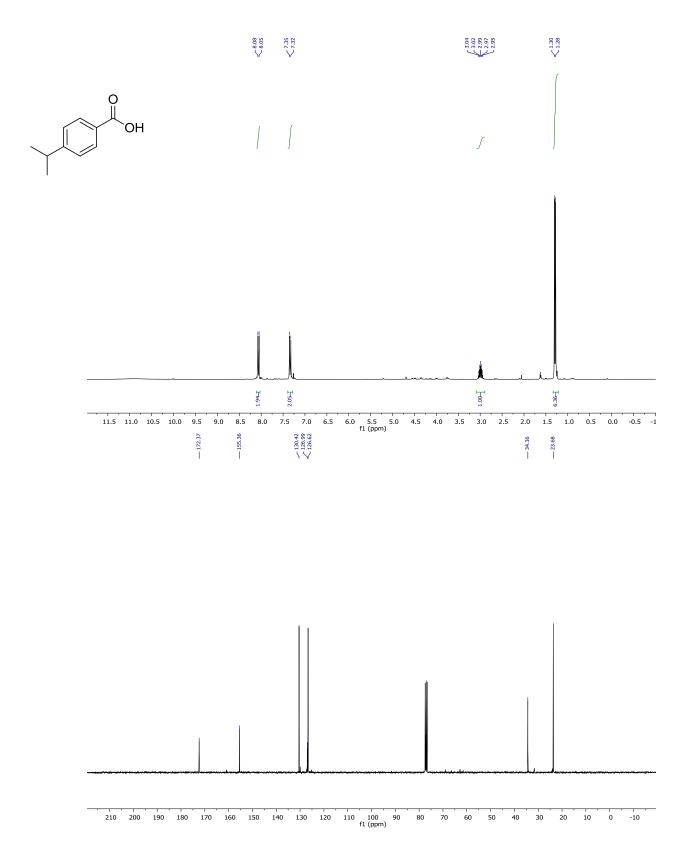

- 2-Methylbenzophenone


-Benzil

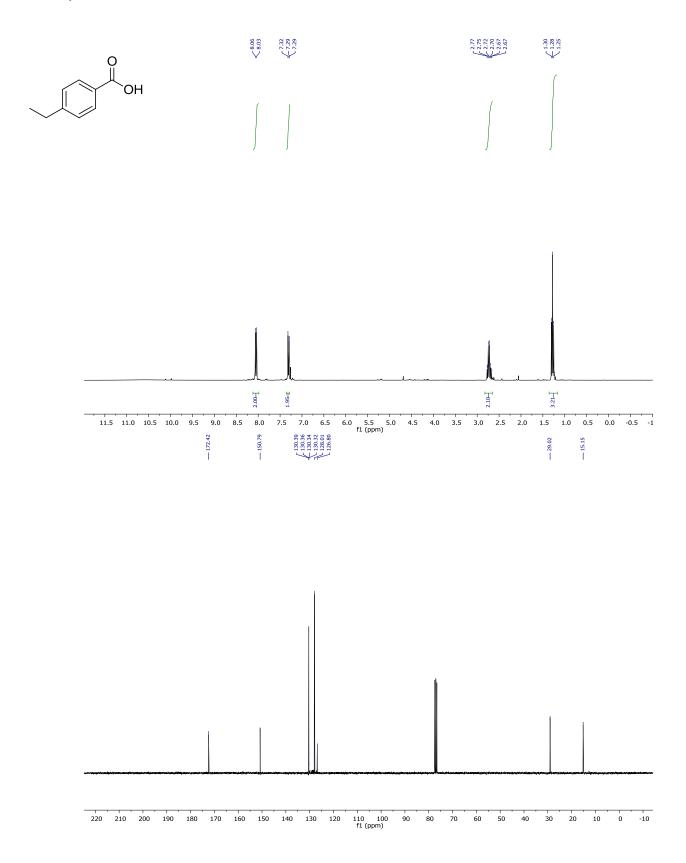

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

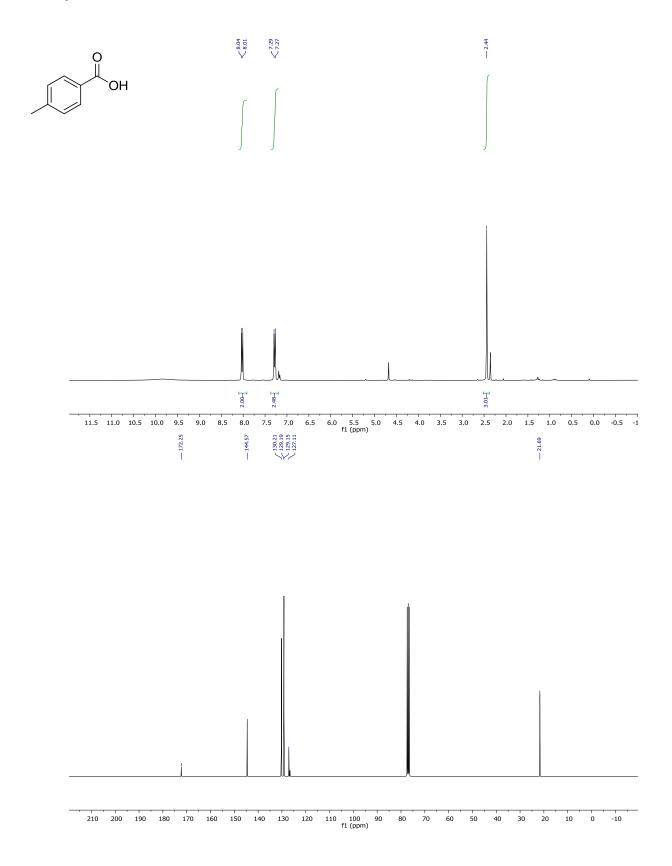


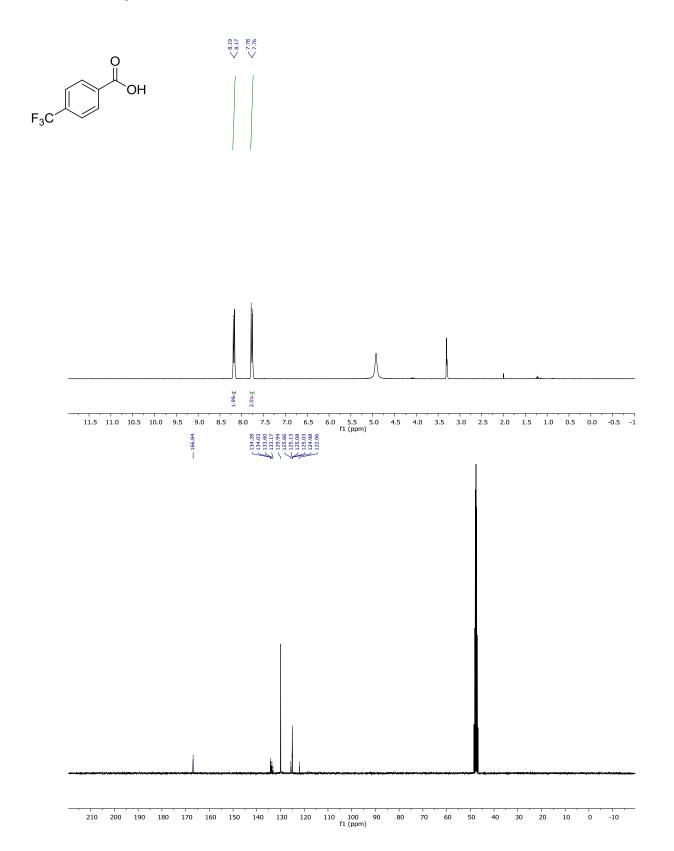
- Anthraquinone

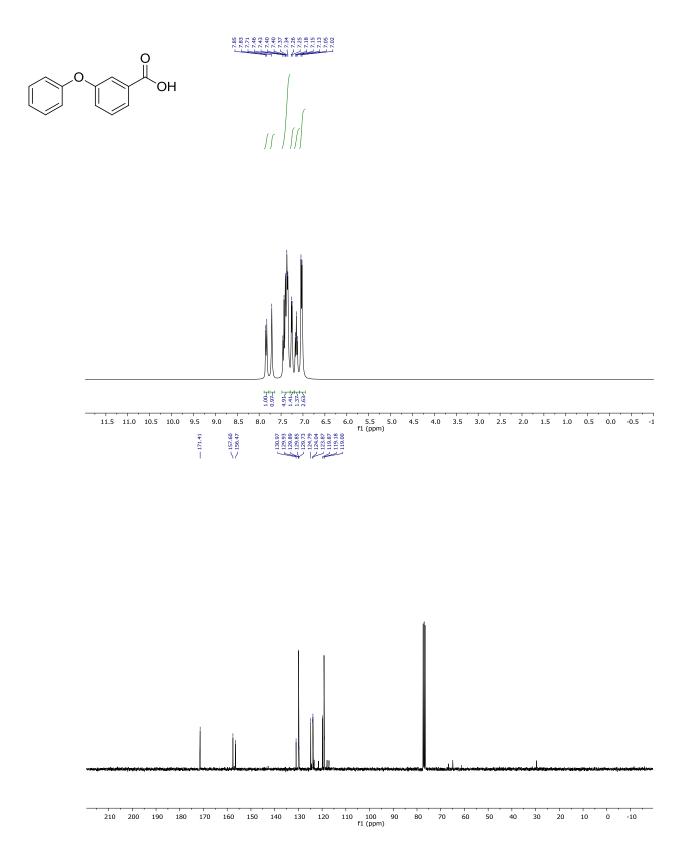


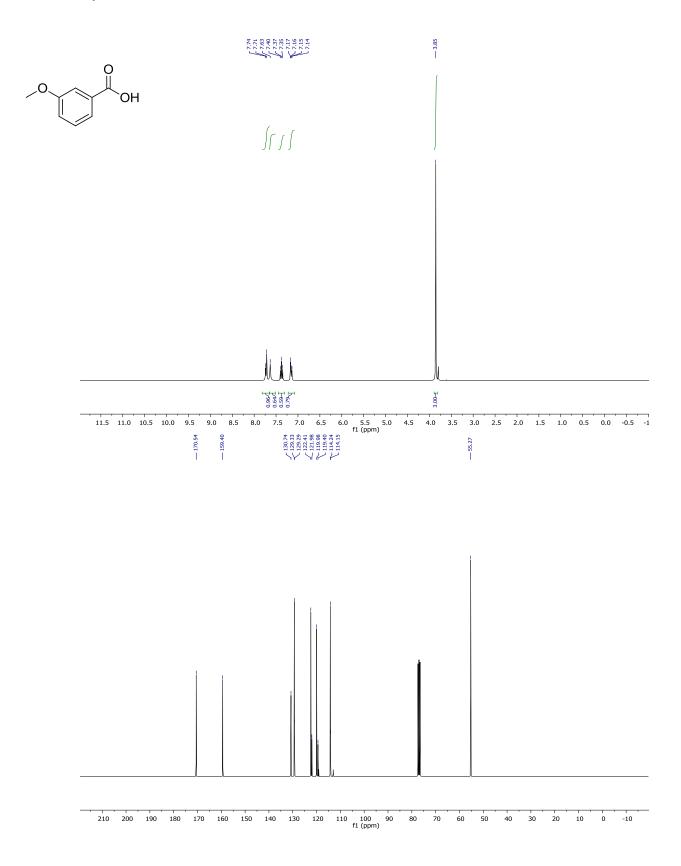
- Benzoic acid




- 4-Isopropylbenzoic acid


- 4-Ethylbenzoic acid


- 4-Methylbenzoic acid


- 4-(Trifluoromethyl)benzoic acid

- 3-Phenoxybenzoic acid

- 3-Methoxybenzoic acid

10. References

- 1. R. A. Fallahpour, Synthesis, 2000, 1138-1142.
- 2. F. Churruca, R. SanMartin, B. Inés, I. Tellitu and E. Domínguez, *Adv. Synth. Catal.*, 2006, **348**, 1836-1840.
- 3. P. Liu, Y. Chen, J. Deng and Y. Tu, Synthesis, 2001, 14, 2078-2080.
- 4. F. Churruca, R. SanMartin, I. Tellitu and E. Domínguez, Synlett, 2005, 20, 3116-3120.
- 5. G. Urgoitia, R. SanMartin, M. T. Herrero and E. Domínguez, *Chem Commun.*, 2015, **51**, 4799-4802.
- 6. M. Kuroboshi, K. Goto and H. Tanaka, Synthesis, 2009, 6, 903-908.
- 7. N. Lykakis, C. Tanielian, R. Seghrouchni and M. Orfanopoulos, J. Mol. Catal. A: Chem., 2007, 262, 176-184.
- 8. Y. A. Ibrahim, K. Kaul and N. A. Al-Awadi, Tetrahedron, 2001, 57, 10171-10176.
- 9. J. Zhuang, C. Wang, F. Xie and W. Zhang, *Tetrahedron*, 2009, **65**, 9797-9800.
- 10. M. M. Khodaie, K. Bahrami and F. Shahbazi, Chem. Lett., 2008, 37, 844-845.
- 11. X. Q. Wang, W. K. Li and C. Zhang, Adv. Synth. Catal, 2009, 351, 2342-2350.
- 12. A. Shaabani and A. Rahmati, Catal. Comm., 2008, 9, 1692-1697.
- 13. C. S. Cho, Catal. Comm, 2008, 9, 2261-2263.
- 14. Z. Zhishuo and Z. Xiaosong, Chin. J. Chem., 2012, 30, 1683-1686.
- 15. S. P. Y. Cutulic, N. J. Findlay, S. Z. Zhou, E. J. T. Chrystal and J. A. Murphy, J. Org. Chem., 2009, 74, 8713-8718.
- 16. K. Nemoto, H. Yoshida, N. Egusa, N. Morahashi and T. Hattori, J. Org. Chem., 2010, 75, 7855-7862.
- 17. L. Jayasinghe, B. M. M. Kumarihamg, K. H. R. N. Jyarathna, N. W. M. G. Udishani, B. M. R. Bnadara, N. Hara and Y. Fujimoto, *Phytochemistry*, 2003, **62**, 637-641.
- 18. A. Correa and R. Martín, J. Am. Chem. Soc., 2009, 131, 15974-15975.
- 19. D. Yang, H. Yang and H. Fu, Chem. Commun, 2011, 47, 2348-2350.