Supporting Information

Aerobic oxidation at benzylic positions catalyzed by a simple $\mathrm{Pd}(\mathrm{OAc})_{2} /$ bis-triazole system

Garazi Urgoitia, Ainhoa Maiztegi, Raul SanMartin, * Maria Teresa Herrero and Esther Dominguez*
Department of Organic Chemistry, University of Basque Country (UPV/EHU), 48940 Leioa, Spain

raul.sanmartin@ehu.eus

1. General remarks. 1
2. Synthesis of 2,6-dibromoisonicotinic acid 2
3. Synthesis of 2,6-bis(3-butylimidazolium-1-yl)isonicotinic acid (L4) 2
4. Synthesis of methyl 2,6-bis(bromomethyl)benzoate 2
5. Synthesis of methyl 2,6-bis(pyrazol-1-ylmethyl)benzoate (L5) 2
6. Synthesis of methyl 3,5-bis((1H-1,2,4-triazol-1-yl)methyl)benzoate (L6) 3
7. Aerobic oxidation of alcohols in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and L6. General procedure 5
8. Benzylic C-H oxidation in the presence of $\operatorname{Pd}(\mathrm{OAc})_{2}$ and L6. General procedure 5
9. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra 7
10. References 35

1. General remarks.

Commercially available reagents were used throughout without purification unless otherwise stated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC-300 instrument (300 MHz for ${ }^{1} \mathrm{H}$ and 75.4 MHz for ${ }^{13} \mathrm{C}$) at $20{ }^{\circ} \mathrm{C}$. Chemical shifts (δ) are given in ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$ and are referenced as internal standard to the residual solvent (unless indicated) CDCl_{3} ($\delta=7.26$ for ${ }^{1} \mathrm{H}$ and $\delta=77.00$ for ${ }^{13} \mathrm{C}$). Coupling constants, J, are reported in hertz (Hz). Melting points were determined in a capillary tube and are uncorrected. TLC was carried out on SiO_{2} (silica gel 60 F 254 , Merck), and the spots were located with UV light. Flash chromatography was carried out on SiO_{2} (silica gel 60, Merck, 230-400 mesh ASTM). IR spectra were recorded on a Perkin-Elmer 1600 FT and JASCO FTIR-4100 infrared spectrophotometer as thin films, and only noteworthy absorptions are reported in cm^{-1}. Drying of organic extracts during workup of reactions was performed over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvents was accomplished with a Büchi rotatory evaporator. MS and HR-MS were measured using a Waters GCT mass spectrometer.
2. Synthesis of 2,6-dibromoisonicotinic acid. ${ }^{1}$ A mixture of citrazinic acid ($500 \mathrm{mg}, 3.22 \mathrm{mmol}$) and phosphorous(V) oxybromide ($1.48 \mathrm{~g}, 5.16 \mathrm{mmol}$) were heated at $175{ }^{\circ} \mathrm{C}$ under Ar for 5 h . After cooling, $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined organic extracts were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo, obtaining 2,6dibromoisonicotinic acid as a reddish powder ($683 \mathrm{mg}, 76 \%$). Mp: 176-178 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta_{\mathrm{H}}: 8.05(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 127.2(\mathrm{C}-3, \mathrm{C}-5), 140.6(\mathrm{C}-2, \mathrm{C}-6), 142.0(\mathrm{C}-4), 166.8$ (COOH). IR (film) $\nu_{\text {max }}: 3072,2890,2579,1725,1531$. HRMS: calculated for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2} \mathrm{Br}_{2}: 279.8609$, found 279.8617 .

3. Synthesis of $\mathbf{3 , 3}$ '-(4-carboxy-2,6-pyridinediyl)-bis[1-butyl-1H-imidazolium] dibromide (L4). ${ }^{2}$ A

 solution of 2,6-dibromoisonicotinic acid ($600 \mathrm{mg}, 2.14 \mathrm{mmol}$) and 1-butylimidazole $\mathbf{L 1}$ ($665 \mathrm{mg}, 5.36$ mmol) was stirred at $150^{\circ} \mathrm{C}$ in a sealed tube for 24 h . After cooling, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ were added to the mixture. The resultant precipitate was collected and purified by crystallization from $\mathrm{MeOH}: \mathrm{Et}_{2} \mathrm{O}$ to afford 3,3'-(4-carboxy-2,6-pyridinediyl)-bis[1-butyl-1-H-imidazolium] dibromide as a brown powder ($1,05 \mathrm{~g}, 93 \%$). Mp: $>300^{\circ} \mathrm{C}$ (EtOAc). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{MeOH}-d_{4}\right) \delta_{\mathrm{H}}: 0.93\left(\mathrm{t}, 6 \mathrm{H}, J=7.3, \mathrm{CH}_{3}\right)$, $1.30-1.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.88-1.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.30\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.3, \mathrm{NCH}_{2}\right)$, 8.12 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}$), 8.47 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$), 8.87 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}$), 10.53 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{MeOH}-d_{4}\right)$ $\delta_{\text {c }}: 13.4\left(\mathrm{CH}_{3}\right), 18.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 31.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 49.5\left(\mathrm{NCH}_{2}\right), 113.6(\mathrm{C}-3, \mathrm{C}-5), 119.5$ (C-5'), 123.7 (C-4'), 136.3 (C-2'), 145.2 (C-4), 159.1 (C-2, C-6), 163.3 (COOH). IR (film) $v_{\max }$: 2359, 1533, 1220. HRMS: Calculated for: $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{Br}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}$ 527.0531, found: 527.0531.4. Synthesis of methyl 2,6-bis(bromomethyl)benzoate. ${ }^{3}$ NBS ($13 \mathrm{~g}, 73.08 \mathrm{mmol}$) was added in four equal portions during 31 h to a solution of methyl 3,5 -dimethylbenzoate ($1.5 \mathrm{~g}, 9.13 \mathrm{mmol}$) in refluxing $\mathrm{CCl}_{4}(55.5 \mathrm{~mL})$, each addition being followed by a few milligrams of benzoyl peroxide. The reaction outcome was monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Upon completion, the mixture was cooled to room temperature and filtered. The filtrate was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was dissolved in anhydrous THF (20 mL), and diethyl phosphate ($13.8 \mathrm{~mL}, 1.07 \mathrm{mmol}$) and $i \mathrm{Pr}_{2} \mathrm{NEt}(18.6 \mathrm{~mL}, 1.07 \mathrm{mmol})$ were added at $0{ }^{\circ} \mathrm{C}$ under Ar. The stirred mixture was allowed to warm to room temperature and stirred for 2 days (the reaction was monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$), and then poured onto ice/water and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$. The organic layers were washed with $1 \mathrm{M} \mathrm{HCl}(1 \times 10 \mathrm{~mL})$ and brine ($1 \times 10 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo to give a residue which was purified by flash chromatography on silicagel using $\mathrm{Et}_{2} \mathrm{O}$ as eluent. Methyl 3,5 -bis(bromomethyl)benzoate was obtained as a yellow powder $(1.46 \mathrm{~g}, 68 \%) . \mathrm{Mp}: 95-97^{\circ} \mathrm{C}(\mathrm{EtOAc}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.44\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.56(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-1), 7.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=1.6, \mathrm{H}-3, \mathrm{H}-5) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 31.8\left(\mathrm{CH}_{3}\right), 52.4\left(\mathrm{CH}_{2}\right), 129.9(\mathrm{C}-3, \mathrm{C}-5)$, 131.4 (C-4), 133.8 (C-1), 138.9 (C-2, C-6), 165.9 (CO). IR (film) $v_{\max }: 1728,1604,1436,1318,1231$, 1108, 1026.
5. Synthesis of methyl 2,6-bis(pyrazol-1-ylmethyl)benzoate (L5). ${ }^{4}$ A mixture of methyl 2,6bis(bromomethyl)benzoate ($600 \mathrm{mg}, 1.86 \mathrm{mmol}$), pyrazole $\mathbf{L 2}(2.79 \mathrm{mg}, 4.09 \mathrm{mmol})$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.37 \mathrm{~g}$, 7.27 mmol) was refluxed in dry acetonitrile (45 mL) under argon for 2 h . After cooling, the resultant solution was filtered and water (30 mL) was added. The aqueous layer was extracted with EtOAc (2 x 40 mL). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo to give a residue which was purified by gradient flash chromatography on silicagel (Hexane:EtOAc 7:3 \rightarrow EtOAc \rightarrow EtOAc:MeOH 9.5:0.5). Methyl 2,6-bis(pyrazol-1-ylmethyl)benzoate was obtained as a white powder ($570 \mathrm{mg}, 99 \%$). Mp: $62-63{ }^{\circ} \mathrm{C}$ (Hexane: EtOAc). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $5.29\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 6.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 7.36\left(\mathrm{~d}, 2 \mathrm{H}, J=1.4, \mathrm{H}-3^{\prime}\right), 7.51(\mathrm{~d}, 2 \mathrm{H}, J=2.0, \mathrm{H}-$ 3, H-5), 7.77 (s, 2H, H-5'). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 52.3\left(\mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{2}\right), 106.3(\mathrm{C}-4$ '), $128.3(\mathrm{C}-3, \mathrm{C}-5)$, 129.5 (C-5'), 131.1 (C-4), 131.3 (C-1), 137.9 (C-2, C-6), 139.9 (C-3'), 166.2 (CO). IR (film) $v_{\text {max }}: 1720$, 1428, 1303, 1213, 772 HRMS: Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} 296.1273$, found: 296.1275
6. Synthesis of methyl 3,5-bis(($\mathbf{1 H - 1 , 2 , 4 - t r i a z o l - 1 - y l) m e t h y l) b e n z o a t e ~ (L 6) . ~}{ }^{5}$ A mixture of methyl 3,5bis(bromomethyl)benzoate ($600 \mathrm{mg}, 1.86 \mathrm{mmol}$), $1 \mathrm{H}-1,2,4$-triazole $\mathbf{L 3}(283 \mathrm{mg}, 4.09 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(2.37 \mathrm{mg}, 7.27 \mathrm{mmol})$ was refluxed in dry acetonitrile (45 mL) under Ar for 3 h . After cooling, the resultant solution was filtered and water (30 mL) was added. The aqueous layer was extracted with EtOAc (3 X 40 mL). The combined organic extracts were dried with anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and the solvent was removed in vacuo to give a residue which was purified by silica gel chromatography eluting with hexane/EtOAc 7/3 \rightarrow EtOAc $\rightarrow \mathrm{EtOAc} / \mathrm{MeOH} 9.5 / 0.5$ to afford methyl 3,5-bis(($1 \mathrm{H}-1,2,4$-triazol-1-yl)methyl)benzoate 3 as a yellowish powder ($510 \mathrm{mg}, 92 \%$). Mp: $105-107^{\circ} \mathrm{C}(\mathrm{EtOAc}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}(\mathrm{ppm}): 3.89(3 \mathrm{H}, \mathrm{s}$, CH_{3}), $5.50\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.51(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.92(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-4, \mathrm{H}-6), 8.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}\right), 8.59$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}(\mathrm{ppm}): 53.9\left(\mathrm{CH}_{2}\right), 123.9(\mathrm{C}-4$ '), $128.6(\mathrm{C}-5, \mathrm{C}-2), 130.2(\mathrm{C}-4, \mathrm{C}-6), 134.2(\mathrm{C}-5$ '), 135.7 (C-1, C-2); IR (film) $\mathrm{v}_{\max }\left(\mathrm{cm}^{-1}\right): 1716,1508,1428,1314,1213,1142,1020$. HR-MS: Calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2}$ 299.1256, found 299.1248.
7. Aerobic oxidation of alcohols in the presence of $\operatorname{Pd}(\mathbf{O A c})_{2}$ and L6. General procedure. A round bottom flask equipped with a magnetic stirrer bar was charged with the alcohol (1 mmol), $\mathrm{NaOAc}(8.0 \mathrm{mg}$, $0.1 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}\left(20 \mu \mathrm{~L}\right.$ of a $5 \times 10^{-6} \mathrm{M}$ solution in PEG-400, $10^{-7} \mathrm{mmol}$), L6 ($20 \mu \mathrm{~L}$ of a $5 \times 10^{-6} \mathrm{M}$ solution in PEG-400, $\left.10^{-7} \mathrm{mmol}\right)$ and PEG $400(1 \mathrm{~mL})$ at room temperature. The system was purged with molecular oxygen, and an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 120 ${ }^{\circ} \mathrm{C}$ under stirring for 48 h . The reaction outcome was monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Upon completion, the mixture was cooled to room temperature and water was added (50 mL aprox.). The resulting solution was acidified with $\mathrm{HCl} 1 \mathrm{M}(\mathrm{pH} \approx 1-2)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 6 \mathrm{~mL})$ and the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to give a residue which was purified by flash column chromatography using hexane:ethyl acetate as eluent. By this procedure the following ketones and acids were prepared:

Acetophenone. ${ }^{6}(119 \mathrm{mg}, 99 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 2.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.42-7.63\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.96(\mathrm{t}$, $\left.J=8,2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 26.5\left(\mathrm{CH}_{3}\right), 128.2\left(\mathrm{C}_{\text {arom-H }}\right), 128.5\left(\mathrm{C}_{\text {arom-H }}\right), 133.0\left(\mathrm{C}_{\text {arom }}\right), 137.07$ ($\mathrm{C}_{\mathrm{q} \text {-arom }}$), 198.1 (CO); LRMS (m/z): $120.1\left(\mathrm{M}^{+}\right)$.

1-Phenyl-1-propanone. ${ }^{7}(122 \mathrm{mg}, 91 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 1.22\left(\mathrm{t}, 3 \mathrm{H}, J=7.2, \mathrm{CH}_{3}\right), 3.0(\mathrm{q}, 2 \mathrm{H}, J=$ $\left.7.3, \mathrm{CH}_{2}\right), 7.45\left(\mathrm{t}, 2 \mathrm{H}, J=6.9, \mathrm{H}_{\text {arom }}\right), 7.54\left(\mathrm{t}, 1 \mathrm{H}, J=6.6, \mathrm{H}_{\text {arom }}\right), 7.96\left(\mathrm{~d}, 2 \mathrm{H}, J=8.3, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 8.2\left(\mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{2}\right), 127.9\left(\mathrm{C}_{\text {arom-H }}\right), 128.6\left(\mathrm{C}_{\text {arom-H }}\right), 132.9\left(\mathrm{C}_{\text {arom-H }}\right), 133.9\left(\mathrm{C}_{\text {q-arom }}\right), 200.8$ (CO); LRMS (m/z): $134.1\left(\mathrm{M}^{+}\right)$.

2,2-Dimethyl-1-phenylpropanone. ${ }^{7}(159 \mathrm{mg}, 98 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 1.35\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 7.30(\mathrm{dd}, 2 \mathrm{H}$, $\left.J=5.0,2.3, \mathrm{H}_{\text {arom }}\right), 7.44\left(\mathrm{dd}, 1 \mathrm{H}, J=5.1,1.5, \mathrm{H}_{\text {arom }}\right), 7.66-7.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 28.0$ $\left(\mathrm{CH}_{3}\right), 44.2\left(\mathrm{C}_{\mathrm{q}}\right), 127.7\left(\mathrm{C}_{\text {arom-H }}\right), 127.8\left(\mathrm{C}_{\text {arom-H }}\right), 128.0\left(\mathrm{C}_{\text {arom-H }}\right), 130.8\left(\mathrm{C}_{\text {arom-H }}\right), 160.4\left(\mathrm{C}_{\text {q-arom }}\right), 209.3$ (CO); LRMS (m/z): $162.1\left(\mathrm{M}^{+}\right)$.

Benzoylcyanide. ${ }^{8}(71 \mathrm{mg}, 54 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.13(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 115.2(\mathrm{CN}), 127.2\left(\mathrm{C}_{\text {arom-H }}\right), 128.5\left(\mathrm{C}_{\text {arom-H }}\right), 135.0\left(\mathrm{C}_{\text {arom-H }}\right), 140.1\left(\mathrm{C}_{\mathrm{q}-}\right.$ arom), $199.1(\mathrm{CO})$; LRMS (m/z): $131.1\left(\mathrm{M}^{+}\right)$.

2-Oxo-phenylacetic acid. ${ }^{9}(129 \mathrm{mg}, 86 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.55\left(\mathrm{t}, 2 \mathrm{H}, J=7.8, \mathrm{H}_{\text {arom }}\right), 7.72(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=7.6, \mathrm{H}_{\text {arom }}\right), 7.8 .35\left(\mathrm{~d}, 2 \mathrm{H}, J=7.6, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 128.3\left(\mathrm{C}_{\text {arom-H }}\right), 129.2\left(\mathrm{C}_{\text {arom-H }}\right), 130.0$ $\left(\mathrm{C}_{\text {arom-H }}\right), 133.6\left(\mathrm{C}_{\text {q-arom }}\right), 160.9(\mathrm{COOH}), 171.6(\mathrm{CO}) ;$ LRMS $(\mathrm{m} / \mathrm{z}): 150.1\left(\mathrm{M}^{+}\right)$.

1-(2-Methoxyphenyl)ethanone. ${ }^{10}(132 \mathrm{mg}, 88 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.89(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 6.91-7.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.44\left(\mathrm{t}, 1 \mathrm{H}, J=9.2, \mathrm{H}_{\text {arom }}\right), 7.71\left(\mathrm{~d}, 1 \mathrm{H}, J=7.7, \mathrm{CH}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 31.7\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right), 111.5\left(\mathrm{C}_{\text {arom-H }}\right), 120.5\left(\mathrm{C}_{\text {arom-H }}\right), 126.3\left(\mathrm{C}_{\text {q-arom }}\right), 130.3\left(\mathrm{C}_{\text {arom-H }}\right)$, 133.6 ($\mathrm{C}_{\text {arom-H }}$), 158.8 ($\mathrm{C}_{\text {q-arom }}$), $199.8(\mathrm{CO})$; LRMS (m/z): $150.1\left(\mathrm{M}^{+}\right)$.

1-(p-Tolyl)ethanone $.^{8}(114 \mathrm{mg}, 85 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.24$ $\left(\mathrm{d}, 2 \mathrm{H}, J=8.2, \mathrm{H}_{\text {arom }}\right), 7.84\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 21.6\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 128.5$ $\left(\mathrm{C}_{\text {arom-H }}\right), 129.2\left(\mathrm{C}_{\text {arom-H }}\right), 134.7\left(\mathrm{C}_{\text {q-arom }}\right), 143.8\left(\mathrm{C}_{\text {q-arom }}\right)$, $197.8(\mathrm{CO}) ;$ LRMS (m/z): $134.1\left(\mathrm{M}^{+}\right)$.

4-Chloroacetophenone. ${ }^{11}(129 \mathrm{mg}, 84 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.43(\mathrm{~d}, 2 \mathrm{H}, J=8.8$, $\left.\mathrm{H}_{\text {arom }}\right), 7.89\left(\mathrm{~d}, 2 \mathrm{H}, J=8.8, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}(\mathrm{ppm}): 26.5\left(\mathrm{CH}_{3}\right), 128.9\left(\mathrm{C}_{\text {arom-H }}\right), 129.7\left(\mathrm{C}_{\text {arom- }}\right.$ н), 135.4 ($\mathrm{C}_{\text {q-arom }}$), $139.6\left(\mathrm{C}_{\text {q-arom }}\right), 196.8(\mathrm{CO}) ;$ LRMS (m/z): $154.1\left(\mathrm{M}^{+}\right)$.

Indanone. ${ }^{7}(128 \mathrm{mg}, 97 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 2.67\left(\mathrm{t}, 2 \mathrm{H}, J=5.8, \mathrm{CH}_{2}\right), 3.13\left(\mathrm{t}, 2 \mathrm{H}, J=5.3, \mathrm{CH}_{2}\right)$, $7.37\left(\mathrm{t}, 1 \mathrm{H}, J=7.5, \mathrm{H}_{\text {arom }}\right), 7.48\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5, \mathrm{H}_{\text {arom }}\right), 7.59\left(\mathrm{t}, 1 \mathrm{H}, J=7.5, \mathrm{H}_{\text {arom }}\right), 7.76(\mathrm{~d}, 1 \mathrm{H}, J=7.5$, $\left.\mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 25.8\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 123.7\left(\mathrm{C}_{\text {arom-H }}\right), 126.7\left(\mathrm{C}_{\text {arom-H }}\right), 127.3\left(\mathrm{C}_{\text {arom- }}\right)$, $134.6\left(\mathrm{C}_{\text {arom-H }}\right), 137.1\left(\mathrm{C}_{\text {q-arom }}\right), 155.2\left(\mathrm{C}_{\text {q-arom }}\right)$, $207.1(\mathrm{CO})$; LRMS ($\left.\mathrm{m} / \mathrm{z}\right): 132.1\left(\mathrm{M}^{+}\right)$.

Fluorenone.. ${ }^{12}(169 \mathrm{mg}, 94 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.20-7.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.36-7.44\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $7.59\left(\mathrm{dd}, 2 \mathrm{H}, J=0.8,7.4, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 120.1(\mathrm{C}), 124.0\left(\mathrm{C}_{\text {arom-H }}\right), 128.8\left(\mathrm{C}_{\text {arom-H }}\right), 133.9$ ($\mathrm{C}_{\text {-arom }}$), $134.5\left(\mathrm{C}_{\text {arom-H }}\right), 144.18\left(\mathrm{C}_{\text {q-arom }}\right)$, $193.7(\mathrm{CO}) ;$ LRMS (m/z): $180.2\left(\mathrm{M}^{+}\right)$.

Xanthenone. ${ }^{8}(176 \mathrm{mg}, 90 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.31\left(\mathrm{t}, 2 \mathrm{H}, J=7.2, \mathrm{H}_{\text {arom }}\right), 7.41(\mathrm{~d}, 2 \mathrm{H}, J=8.4$, $\left.\mathrm{H}_{\text {arom }}\right), 7.65\left(\mathrm{t}, 2 \mathrm{H}, J=6.9, \mathrm{H}_{\text {arom }}\right), 8.27\left(\mathrm{~d}, 2 \mathrm{H}, J=9.7, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 117.9\left(\mathrm{C}_{\text {arom- }}, 121.7\right.$ ($\mathrm{C}_{\text {arom-H }}$), 123.9 ($\left.\mathrm{C}_{\text {arom-H }}\right), 126.6\left(\mathrm{C}_{\text {arom-H }}\right), 134.8$ ($\left.\mathrm{C}_{\text {arom-H }}\right), 156.1\left(\mathrm{C}_{\text {q-arom }}\right), 177.2(\mathrm{CO})$; LRMS (m / z): 196.1 $\left(\mathrm{M}^{+}\right)$.

Benzophenone7 ($166 \mathrm{mg}, 91 \%$) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.42-7.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.54-7.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, 7.79-7.82 (m, 4H, $\mathrm{H}_{\text {arom }}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 128.2\left(\mathrm{C}_{\text {arom }}\right), 129.94\left(\mathrm{C}_{\text {arom }}\right), 132.3\left(\mathrm{C}_{\text {arom }}\right), 132.5\left(\mathrm{C}_{\mathrm{q}-}\right.$ arom), 196.6 (CO); LRMS (m/z): $182.1\left(\mathrm{M}^{+}\right)$.

2-Methylbenzophenone. ${ }^{13}(145 \mathrm{mg}, 74 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.25-7.33(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}\right), 7.38\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5, \mathrm{H}_{\text {arom }}\right), 7.45\left(\mathrm{t}, 2 \mathrm{H}, J=7.5, \mathrm{H}_{\text {arom }}\right), 7.58\left(\mathrm{t}, 1 \mathrm{H}, J=8, \mathrm{H}_{\text {arom }}\right), 7.81(\mathrm{~d}, 2 \mathrm{H}, J=$ $\left.8.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 19.9\left(\mathrm{CH}_{3}\right) ; 125.2\left(\mathrm{C}_{\text {arom-H }}\right), 128.5\left(\mathrm{C}_{\text {arom-H }}\right), 130.1\left(\mathrm{C}_{\text {arom-H }}\right), 131.0$ ($\mathrm{C}_{\text {arom-H }}$), 133.1 ($\mathrm{C}_{\text {arom-H }}$), 136.7 ($\left.\mathrm{C}_{\text {q-arom }}\right), 137.8\left(\mathrm{C}_{\text {q-arom }}\right), 138.6\left(\mathrm{C}_{\text {q-arom }}\right), 198.6(\mathrm{CO})$; LRMS (m / z): 196.2 $\left(\mathrm{M}^{+}\right)$.

Benzil. ${ }^{14}$ (from benzoin 204 mg , 97%; from hydrobenzoin $199 \mathrm{mg}, 95 \%$) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.50-7.56$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.64-7.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.94-8.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 129.0\left(\mathrm{C}_{\text {arom- }}\right)$, 129.9 (Carom-H), $133.0\left(\mathrm{C}_{\text {q-arom }}\right), 134.9\left(\mathrm{C}_{\text {arom-H }}\right), 194.6(\mathrm{CO}) ;$ LRMS (m / z): $210.1\left(\mathrm{M}^{+}\right)$.

Desoxybenzoin. ${ }^{15}(184 \mathrm{mg}, 94 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 4.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.24-7.29\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.32-$ $7.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.45-7.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.55-7.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.02-8.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 45.5\left(\mathrm{CH}_{2}\right), 126.9\left(\mathrm{C}_{\text {arom-H }}\right), 126.9\left(\mathrm{C}_{\text {arom-H }}\right), 128.5\left(\mathrm{C}_{\text {q-arom }}\right), 128.6\left(\mathrm{C}_{\text {arom-H }}\right), 128.6\left(\mathrm{C}_{\text {arom- }}\right.$ н), $128.7\left(\mathrm{C}_{\text {arom-H }}\right), 129.5\left(\mathrm{C}_{\text {arom-H }}\right), 133.17\left(\mathrm{C}_{\text {arom- }}\right), 134.5\left(\mathrm{C}_{\text {q-arom }}\right), 136.6\left(\mathrm{C}_{\text {q-arom }}\right), 197.6$ (CO); LRMS $(\mathrm{m} / \mathrm{z}): 196.1\left(\mathrm{M}^{+}\right)$.

Benzoic acid. ${ }^{16}(101 \mathrm{mg}, 83 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.49\left(\mathrm{t}, 2 \mathrm{H}, J=7.5, \mathrm{H}_{\text {arom }}\right), 7.63(\mathrm{t}, 1 \mathrm{H}, J=6.8$, $\left.\mathrm{H}_{\text {arom }}\right), 8.15\left(\mathrm{~d}, 2 \mathrm{H}, J=8.4, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 128.4\left(\mathrm{C}_{\text {arom-H }}\right), 129.6\left(\mathrm{C}_{\text {q-arom }}\right), 130.1\left(\mathrm{C}_{\text {arom-H }}\right)$, $133.7\left(\mathrm{C}_{\text {arom-H }}\right), 172.1(\mathrm{COOH})$; LRMS (m/z): $122.1\left(\mathrm{M}^{+}\right)$.

4-Isopropylbenzoic acid. ${ }^{17}(154 \mathrm{mg}, 94 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 1.29\left(\mathrm{~d}, 6 \mathrm{H}, J=6.9, \mathrm{CH}_{3}\right), 2.99(\mathrm{q}, 1 \mathrm{H}, J$ $=6.9, \mathrm{CH}), 7.34\left(\mathrm{~d}, 2 \mathrm{H}, J=8.4, \mathrm{H}_{\text {arom }}\right), 8.06\left(\mathrm{~d}, 2 \mathrm{H}, J=8.3, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 23.7\left(\mathrm{CH}_{3}\right)$, $34.2(\mathrm{CH}), 126.6\left(\mathrm{C}_{\text {arom-H }}\right), 126.9\left(\mathrm{C}_{\text {q-arom }}\right), 130.4\left(\mathrm{C}_{\text {arom-H }}\right), 155.3\left(\mathrm{C}_{\text {q-arom }}\right), 172.4(\mathrm{COOH}) ;$ LRMS $(\mathrm{m} / \mathrm{z})$: $164.1\left(\mathrm{M}^{+}\right)$.

4-Ethylbenzoic acid. ${ }^{16}(129 \mathrm{mg}, 86 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 1.28\left(\mathrm{t}, 3 \mathrm{H}, J=7.3, \mathrm{CH}_{3}\right), 2.73(\mathrm{q}, 2 \mathrm{H}, J=$ $\left.7.3, \mathrm{CH}_{2}\right), 7.31\left(\mathrm{~d}, 2 \mathrm{H}, J=8.1, \mathrm{H}_{\text {arom }}\right), 8.05\left(\mathrm{~d}, 2 \mathrm{H}, J=8.3, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 15.1\left(\mathrm{CH}_{3}\right), 29.0$ $\left(\mathrm{CH}_{2}\right), 126.8\left(\mathrm{C}_{\text {q-arom }}\right), 128.0\left(\mathrm{C}_{\text {arom-H }}\right), 130.4\left(\mathrm{C}_{\text {arom- }}\right), 150.8\left(\mathrm{C}_{\text {q-arom }}\right), 172.4(\mathrm{COOH}) ;$ LRMS $(\mathrm{m} / \mathrm{z}): 150.1$ $\left(\mathrm{M}^{+}\right)$.

4-Methylbenzoic acid. ${ }^{16}(113 \mathrm{mg}, 83 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.28(\mathrm{~d}, 2 \mathrm{H}, J=8.4$, $\left.\mathrm{H}_{\text {arom }}\right), 8.02\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 21.7\left(\mathrm{CH}_{3}\right), 127.1\left(\mathrm{C}_{\text {q-arom }}\right), 129.1\left(\mathrm{C}_{\text {arom-H }}\right)$, $130.2\left(\mathrm{C}_{\text {arom-H }}\right), 144.6\left(\mathrm{C}_{\text {q-arom }}\right), 172.2(\mathrm{COOH}) ;$ LRMS $(\mathrm{m} / \mathrm{z}): 136.1\left(\mathrm{M}^{+}\right)$.

4-(Trifluoromethyl)benzoic acid. ${ }^{18}(144 \mathrm{mg}, 76 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.70\left(\mathrm{~d}, 2 \mathrm{H}, J=7.7, \mathrm{H}_{\text {arom }}\right), 8.16$ $\left(\mathrm{d}, 2 \mathrm{H}, J=7.3, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 123.2\left(\mathrm{~d}, J=272, \mathrm{CF}_{3}\right), 127.4\left(\mathrm{~d}, J=3.7, \mathrm{C}_{\text {arom-H }}\right), 132.1$ ($\mathrm{C}_{\text {arom-H }}$), $135.5\left(\mathrm{~d}, J=32.8, \mathrm{C}_{\text {q-arom }}\right), 136.2\left(\mathrm{C}_{\text {q-arom }}\right), 168.6(\mathrm{COOH}) ;$ LRMS $(\mathrm{m} / \mathrm{z}): 190.0\left(\mathrm{M}^{+}\right)$.

3-Phenoxybenzoic acid. ${ }^{18}(175 \mathrm{mg}, 82 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.03\left(2 \mathrm{H}, \mathrm{d}, J=7.7, \mathrm{H}_{\text {arom }}\right), .7 .15(1 \mathrm{H}, \mathrm{t}, J$ $\left.=7.3, \mathrm{H}_{\text {arom }}\right), 7.26\left(1 \mathrm{H}, \mathrm{t}, J=3.8, \mathrm{H}_{\text {arom }}\right.$), $7.38\left(3 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.3,5.6, \mathrm{H}_{\text {arom }}\right), 7.44\left(1 \mathrm{H}, \mathrm{d}, J=8, \mathrm{H}_{\text {arom }}\right), 7.71$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\text {arom }}\right), 7.84\left(1 \mathrm{H}, \mathrm{d}, J=7.7, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 119.2\left(\mathrm{C}_{\text {arom-H }}\right), 119.8\left(\mathrm{C}_{\text {arom-H }}\right), 123.9$ ($\mathrm{C}_{\text {arom-H }}$), 124.8 ($\left.\mathrm{C}_{\text {arom-H }}\right), 129.9\left(\mathrm{C}_{\text {arom-H }}\right), 131.0\left(\mathrm{C}_{\text {q-arom }}\right), 156.5$ ($\left.\mathrm{C}_{\text {arom-H }}\right), 157.6$ ($\left.\mathrm{C}_{\text {arom-H }}\right), 160.5\left(\mathrm{C}_{\text {q-arom }}\right)$, $160.9\left(\mathrm{C}_{\mathrm{q} \text {-arom }}\right)$, $171.0(\mathrm{COOH})$; LRMS (m/z): $214.0\left(\mathrm{M}^{+}\right)$.

3-Methoxybenzoic acid. ${ }^{\mathbf{1 9}}(138 \mathrm{mg}, 91 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.15(\mathrm{dd}, 1 \mathrm{H}, J=7.4$, $\left.1.8, \mathrm{H}_{\text {arom }}\right), 7.37\left(\mathrm{t}, 1 \mathrm{H}, J=8.0, \mathrm{H}_{\text {arom }}\right), 7.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.72\left(\mathrm{~d}, 1 \mathrm{H}, J=7.6, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta_{\mathrm{C}}: 55.4\left(\mathrm{OCH}_{3}\right), 114.4\left(\mathrm{C}_{\text {arom-H }}\right), 120.4\left(\mathrm{C}_{\text {arom-H }}\right), 122.7\left(\mathrm{C}_{\text {arom-H }}\right), 129.5\left(\mathrm{C}_{\text {arom-H }}\right), 130.6\left(\mathrm{C}_{\mathrm{q}-\operatorname{arom}}\right), 159.6\left(\mathrm{C}_{\mathrm{q}-}\right.$ arom), $172.1(\mathrm{COOH}) ;$ LRMS (m/z): $152.0\left(\mathrm{M}^{+}\right)$.
8. Benzylic C-H oxidation in the presence of $\operatorname{Pd}(\mathrm{OAc})_{2}$ and L6. General procedure. A round bottom flask equipped with a magnetic stirrer bar was charged with the methylene compound (1 mmol), NaOAc $(8.0 \mathrm{mg}, 0.1 \mathrm{mmol}), \operatorname{Pd}(\mathrm{OAc})_{2}\left(20 \mu \mathrm{~L}\right.$ of a $5 \times 10^{-6} \mathrm{M}$ solution in PEG-400, $\left.10^{-7} \mathrm{mmol}\right), 6(20 \mu \mathrm{~L}$ of a 5 x $10^{-6} \mathrm{M}$ solution in PEG-400, $10^{-7} \mathrm{mmol}$) and PEG $400(1 \mathrm{~mL})$ at room temperature. The system was purged with molecular oxygen, and an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at $120^{\circ} \mathrm{C}$ under stirring for 48 h . The reaction outcome was monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Upon completion, the mixture was cooled to room temperature and water was added (50 mL aprox.). The resulting solution was acidified with $\mathrm{HCl} 1 \mathrm{M}(\mathrm{pH} \approx 1-2)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 6 \mathrm{~mL})$ and the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to give a residue which was purified by flash column chromatography using hexane:ethyl acetate as eluent. By this procedure the following ketones were prepared:

Acetophenone. ${ }^{6}$ (114 mg, 95\%)
Benzil. ${ }^{12}$ (204 mg, 97\%)
Xanthenone. ${ }^{8}$ ($190 \mathrm{mg}, 97 \%$)

Fluorenone. ${ }^{8}$ ($175 \mathrm{mg}, 97 \%$)
Anthraquinone. ${ }^{9}(185 \mathrm{mg}, 89 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.79-7.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right), 8.30-8.33(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 127.2\left(\mathrm{C}_{\text {arom-H }}\right), 133.5\left(\mathrm{C}_{\text {q-arom }}\right), 134.4\left(\mathrm{C}_{\text {arom-H }}\right), 183.2(\mathrm{CO}) ;$ LSMR (m / z): 208.1 (M^{+}).

Benzophenone. ${ }^{7}$ ($175 \mathrm{mg}, 96 \%$)

9. ${ }^{1}$ H-NMR and ${ }^{13}$ C-NMR spectra

2,6-Dibromoisonicotinic acid

~

3,3'-(4-Carboxy-2,6-pyridinediyl)-bis[1-butyl-1 H -imidazolium] dibromide (L4)

- Methyl 2,6-bis(bromomethyl)benzoate.

- Methyl 2,6-bis(pyrazol-1-ylmethyl)benzoate (L5).

- Methyl 3,5-bis((1H-1,2,4-triazol-1-yl)methyl)benzoate (L6)

- Acetophenone

- 1-Phenyl-1-propanone

\int

- 2,2-Dimethyl-1-phenylpropanone

- Benzoylcyanide

-2-Oxo-phenylacetic acid

湓忩

- 1-(2-Methoxyphenyl)ethanone

- 1-(p-Tolyl)ethanone

- 4-Chloroacetophenone

- Indanone

- Fluorenone

- Xanthenone

- Benzophenone

- 2-Methylbenzophenone

-Benzil

-Deoxybenzoin

- Anthraquinone

- Benzoic acid

- 4-Isopropylbenzoic acid

- 4-Ethylbenzoic acid

- 4-Methylbenzoic acid

- 4-(Trifluoromethyl)benzoic acid

- 3-Phenoxybenzoic acid

 $\left\|_{\int /}\right\|_{\|}$

- 3-Methoxybenzoic acid

10. References

1. R. A. Fallahpour, Synthesis, 2000, 1138-1142.
2. F. Churruca, R. SanMartin, B. Inés, I. Tellitu and E. Domínguez, Adv. Synth. Catal., 2006, 348, 1836-1840.
3. P. Liu, Y. Chen, J. Deng and Y. Tu, Synthesis, 2001, 14, 2078-2080.
4. F. Churruca, R. SanMartin, I. Tellitu and E. Domínguez, Synlett, 2005, 20, 3116-3120.
5. G. Urgoitia, R. SanMartin, M. T. Herrero and E. Domínguez, Chem Commun., 2015, 51, 47994802.
6. M. Kuroboshi, K. Goto and H. Tanaka, Synthesis, 2009, 6, 903-908.
7. N. Lykakis, C. Tanielian, R. Seghrouchni and M. Orfanopoulos, J. Mol. Catal. A: Chem., 2007, 262, 176-184.
8. Y. A. Ibrahim, K. Kaul and N. A. Al-Awadi, Tetrahedron, 2001, 57, 10171-10176.
9. J. Zhuang, C. Wang, F. Xie and W. Zhang, Tetrahedron, 2009, 65, 9797-9800.
10. M. M. Khodaie, K. Bahrami and F. Shahbazi, Chem. Lett., 2008, 37, 844-845.
11. X. Q. Wang, W. K. Li and C. Zhang, Adv. Synth. Catal,. 2009, 351, 2342-2350.
12. A. Shaabani and A. Rahmati, Catal. Comm., 2008, 9, 1692-1697.
13. C. S. Cho, Catal. Comm,. 2008, 9, 2261-2263.
14. Z. Zhishuo and Z. Xiaosong, Chin. J. Chem., 2012, 30, 1683-1686.
15. S. P. Y. Cutulic, N. J. Findlay, S. Z. Zhou, E. J. T. Chrystal and J. A. Murphy, J. Org. Chem., 2009, 74, 8713-8718.
16. K. Nemoto, H. Yoshida, N. Egusa, N. Morahashi and T. Hattori, J. Org. Chem., 2010, 75, 78557862.
17. L. Jayasinghe, B. M. M. Kumarihamg, K. H. R. N. Jyarathna, N. W. M. G. Udishani, B. M. R. Bnadara, N. Hara and Y. Fujimoto, Phytochemistry, 2003, 62, 637-641.
18. A. Correa and R. Martín, J. Am. Chem. Soc., 2009, 131, 15974-15975.
19. D. Yang, H. Yang and H. Fu, Chem. Commun,. 2011, 47, 2348-2350.
