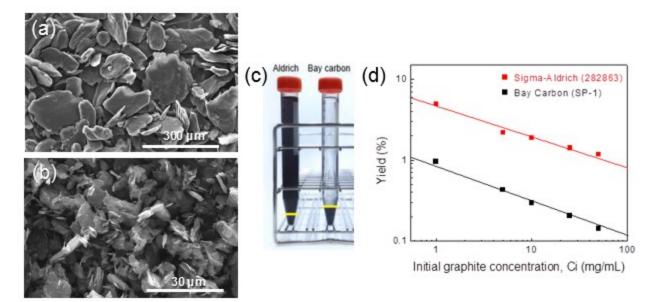
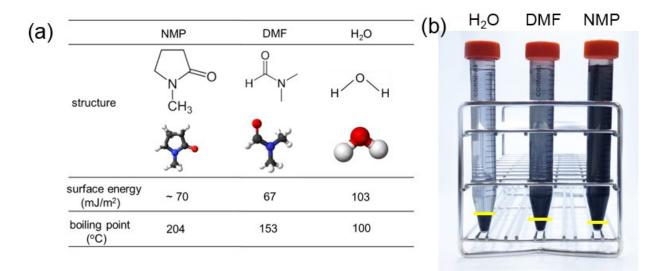
Electronic Supplementary Information

High Shear-Induced Exfoliation of Graphite into High Quality Graphene by Taylor-Couette Flow

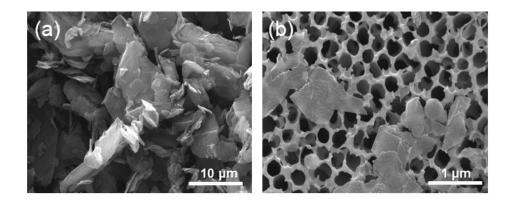
Tuan Sang Tran,[†] Seung Jun Park,[†] Sung Sic Yoo,[‡] Tae-Rin Lee,[‡] TaeYoung Kim^{†*}

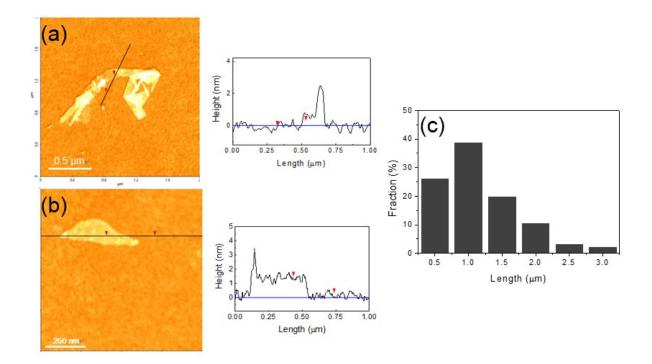

[†] Department of Bionanotechnology, Gachon University, Seongnam, Gyeonggi-do 13120, Korea. [‡] Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Gyeonggido 443-270, Korea.

* Corresponding author. E-mail: <u>taeykim@gachon.ac.kr</u> (TaeYoung Kim)


Contents

- Figure S1. SEM images of graphite powders
- Figure S2. Solvent used for shear exfoliation of graphite
- Figure S3. SEM images of graphene sheets
- Figure S4. AFM images of graphene sheets
- Figure S5. Measurement of absorption coefficient of graphene dispersion
- Figure S6. Streamline of a Taylor-Couette flow


Table S1.


Figure S1. SEM images of graphite powders: (a) Bay Carbon SP-1 and (b) Sigma-Aldrich 282863. (c) graphene dispersions produced by shear-exfoliation of different graphite powders. Photograph was taken after centrifugation. (d) comparison of graphene production yield.

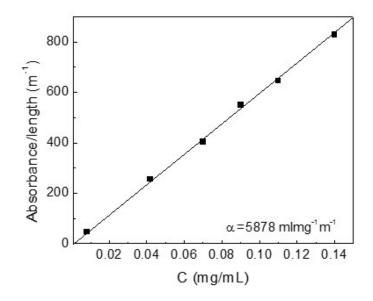

Figure S2. (a) Solvents used for shear exfoliation of graphite. (b) graphene dispersions produced by shear-exfoliation of graphite powders in different solvents. Photographs were taken after centrifugation.

Figure S3. SEM images of (a) graphite powders (Sigma-Aldrich 282863) and (b) graphene sheets produced by shear exfoliation of graphite. Graphene were vacuum-filtered on a alumina membrane.

Figure S4. (a) and (b) AFM images of graphene sheets produced by shear-exfoliation of graphite and the corresponding AFM height profiles. (c) Length (the longest dimension) histogram for shear-exfoliated graphene.

Figure S5. Measurement of absorption coefficient of graphene dispersion produced by high shear-induced exfoliation.

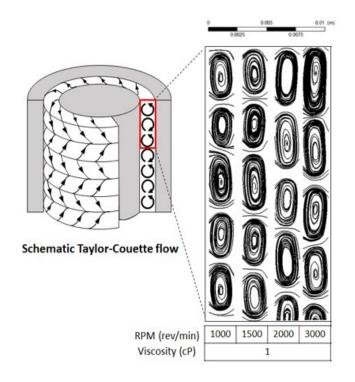


Figure S6. Streamline of a Taylor-Couette flow with respect to the rotation speed of inner cylinder.

	Method	Raman Oxidation			
Ref		In I	state	Yield	Remarks
This work	Shear exfoliation using a Taylor- Couette flow reactor	~0.14	None	~5%	Scalable, high yield, overall process duration < 1 h
1	Shear exfoliation using a L5M Silverson Mixer	0.17-0.37	None	<0.1%	Scalable, moderate yield
2	Sonication in NMP	~0.22	None	_	Overall process duration > 160 h, Low yield
3	Sonication in Water/SDBS surfactant	~0.4	~14%	<3.6%	Small scale (25mL), high oxidation state
4	Wet milling in the presence of SDS	0.6-0.7	None	-	High degree of defect.
5	Interlayer catalytic exfoliation with FeCl ₃ and H_2O_2	0.1	None	-	Overall process duration ~26 h
6	Mild sonication in the presence of gum arabic	~0.25	-	~5%	Overall process duration > 100 h
7	High-shear mixing and sonication in ortho-dichlorobenzene	<0.3	10%	<5%	High oxidation state

 Table S1. Comparison of graphene production methods.

References

- 1. Paton, Keith R., et al. "Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids." Nature materials 2014, 13 (6), 624-630.
- 2. Khan, Umar, et al. "Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation." Carbon 2012, 50(2), 470-475.

- Lotya, Mustafa, et al. "Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions." Journal of the American Chemical Society 2009, 131(10), 3611-3620.
- 4. Knieke, Catharina, et al. "Scalable production of graphene sheets by mechanical delamination." Carbon 2010, 48(11), 3196-3204.
- 5. Geng, Xiumei, et al. "Interlayer catalytic exfoliation realizing scalable production of largesize pristine few-layer graphene." Scientific reports 2013, 3, 1134.
- 6. Chabot, Victor, et al. "High yield production and purification of few layer graphene by gum arabic assisted physical sonication." Scientific reports 2013, 3, 1378.
- 7. Hamilton, Christopher E., et al. "High-yield organic dispersions of unfunctionalized graphene." Nano letters 2009, 9 (10), 3460-3462.