Electronic Supplementary Information (ESI)

A unique cooperative catalytic system carrying metallic iron and 2-hydroxyethyl 2-bromoisobutyrate for the controlled/living ring-opening polymerization of ε -caprolactone

Xiu-Juan Shang,^a Wen-Hua Zhang,^{*a} and Jian-Ping Lang^{*a,b}

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210032, People's Republic of China

Contents

Figure 8	51.	^{1}H	NMR	spectrum	of	poly(<i>e</i> -cap	rolactone)	(PCL)	catalyzed	by	Fe/2-hydroxy	yethyl
2-bromoi	isob	uty	rate (H	EBiB)								S3

Figure S2. ¹H NMR spectra of poly(*ε*-caprolactone) (PCL) initiated by benzyl alcohol (PhCH₂OH) and catalyzed by iron powder along with different haloalkanes like 2-bromo-2-methylpropane (BMP), ethyl-2-bromoisobutyrate (EBiB) and 2-hydroxyethyl 2-bromoisobutyrate (HEBiB).....S3

Table S1. Polymerization of ε-caprolactone (CL) by stepwise addition of the reactants......S4

Figure S1. ¹H NMR spectrum of poly(*ε*-caprolactone) (PCL) catalyzed by Fe/2-hydroxyethyl 2-bromoisobutyrate (HEBiB).

Figure S2. ¹H NMR spectra of $poly(\varepsilon$ -caprolactone) (PCL) initiated by benzyl alcohol (PhCH₂OH) and catalyzed by iron powder along with different haloalkanes like 2-bromo-2-methylpropane (BMP), ethyl-2-bromoisobutyrate (EBiB) and 2-hydroxyethyl 2-bromoisobutyrate (HEBiB).

Table S1. Polymerization of ε -caprolactone (CL) by stepwise addition of the reactants.

Entry	$M_{\rm n}^{\rm d}$ (g/mol)	$M_{\rm theo}^{\rm e}$ (g/mol)	$\mathrm{PDI}^{\mathrm{d}}$	Yield ^f (%)
1^{a}	23040	22830	1.24	100
2 ^b	19990	22830	1.27	100
3°	18280	22830	1.33	100
Reaction	condition: solvent: tolue	ne; reaction temperature: 110	0 °C; HEBiB: 2-hydr	oxyethyl 2-bromoisobutyrate.

^a [Fe]₀:[HEBiB]₀ = 1:1 was added first and heated for 24 h, then 100 equiv of CL was added and heated for another 24 h. ^b[CL]₀:[Fe]₀:[HEBiB]₀ = 1:1:1 was added first and heated for 24 h, then 99 equiv of CL was added and heated for another 24 h. ^{c=}[CL]₀:[Fe]₀:[HEBiB]₀ = 50:1:1 was added first and heated for 24 h, then 50 equiv of CL was added and heated for another 24 h. ^d Determined by GPC analysis in THF, calibrated to a polystyrene standard. ^e M_{thoe} = yield (%) × ratio [CL]₀/[HEBiB]₀ × 2 × M (CL). ^f Yield: weight of polymer obtained/weight of monomer used.