Synthesis and evaluation of 6-substituted 3-arylcoumarin derivatives

as multifunctional acetylcholinesterase/monoamine oxidase B dual

inhibitors for the treatment of Alzheimer's disease

Zhi-Min Wang, Xue-Mei Li, Gui-Min Xue, Wei Xu, Xiao-Bing Wang* and Ling-Yi

Kong*

State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China

* Corresponding Authors. Tel/Fax: +86-25-83271405; E-mail: cpu_lykong@126.com (Ling-Yi Kong); xbwang@cpu.edu.cn.

Contents

- 1. Table S1. HPLC analysis data of compounds 5a-t.
- Table S2. Effects of compounds 50 and 5p in PC12 cells viability. The cell viability was determined by the MTT assay after 24 h of incubation 50 and 5p at 3.125-50 μM. The results were expressed as a percentage of control cells. Values are reported as the mean ± SD of three independent experiments.
- 3. **Table S3.** Permeability (Pe \times 10⁻⁶ cm s⁻¹) in the PAMPA-BBB assay for 11 commercial drugs, used in the experiment validation.
- 4. Figure S1. Molecular modeling studies of 50 with hAChE and hMAO-B.
- 5. **Figure S2**. Lineal correlation between experimental and reported permeability of commercial drugs using the PAMPA-BBB assay.
- Figure S3. The representative ¹H NMR and ¹³C NMR, IR and HRMS (ESI) spectrums of 5a, 5b, 5e, 5h, 5l, 5o and 5p.

Table S1. HPLC analysis data of compounds **5a-t**. The purities of compounds were determined by the methods as shown given in the following table. The peak purity was checked with UV spectra.

Equipment		Agilent 1200 with binary pump, photodiode array detector (DAD)			
Column		Agilent Zorbax Exlipse SB-C18 (250×4.6 mm, 5 µm particle size)			
		CH ₃ OH/H ₂ O, 65% (v/v) of CH ₃ OH gradient, flow rate: 1.0			
Method		mL/min, calculated the relative purity of each compound at 254			
		nm			
	Compds	Retention time (min)	Relative purity (%)		
	5 a	7.54	99.16		
	5b	6.88	98.25		
	5c	6.68	98.77		
	5d	7.96	98.11		
Results	5e	5.91	96.67		
	5 f	7.31	96.44		
	5g	8.65	98.25		
	5h	6.73	99.23		
	5i	7.78	98.59		
	5j	6.94	97.36		
	5k	7.68	98.52		
	51	7.93	96.32		
	5m	8.21	95.45		
	5n	8.47	96.73		
	50	6.41	95.88		
	5p	5.42	96.84		
	5q	6.64	97.24		
	5r	6.78 97.31			
	5 s	8.17 96.46			
	5t	7.34 98.77			

commercial alags, asea in the experiment valuation								
Commercial drugs	Bibliography ^{a)}	Experiment ^{b)}						
Testosterone	17	22.06 ± 3.21						
Verapamil	16	16.71 ± 1.45						
β-Estradiol	12 13.96 ± 2							
Progesterone	9.3	13.15 ± 1.52						
Clonidine	5.3	8.10 ± 1.26						
corticosterone	5.1	3.91 ± 0.78						
Piroxicam	2.5	3.27 ± 0.94						
Hydrocortisone	1.9	2.78 ± 0.63						
Lomefloxacin	1.1	3.72 ± 1.75						
Ofloxacin	0.8	3.22 ± 0.48						
Dopamine	0.2	1.34 ± 0.25						

Table S2. Permeability ($Pe \times 10^{-6} \text{ cm s}^{-1}$) in the PAMPA-BBB assay for 11 commercial drugs, used in the experiment validation.

^{a)} Taken from Ref.¹

^{b)} Data are the mean \pm SD of three independent experiments.

Ref.¹ L. Di, E. H. Kerns, K. Fan, O. J. McConnell and G. T. Carter, Eur J Med Chem.,

2003, 38, 223-232.

Table S3. Effects of compounds 50 and 5p on cell viability.^{a)}

Compounds	Viability(%) PC12 cells						
	50 µM	25 µM	12.5 µM	6.25 μM	3.125 μM		
50	91.0 ± 5.0	95.3 ± 3.5	99.0 ± 1.5	101.3 ± 3.2	101.7 ± 3.1		
5p	87.3 ± 4.7	94.1 ± 4.9	97.3 ± 3.3	102.0 ± 3.6	101.3 ± 3.2		

^{a)} Cell viability was measured as MTT reduction and data were normalized as % control. Data are expressed as the means \pm SEM of triplicate of four different cultures. All compounds were assayed at increasing concentrations (3.125-50 μ M).

Figure S1. Molecular modeling studies of 50 with hAChE and hMAO-B.

Figure S1.1. 50 with hAChE

Figure S1.2. 50 with hMAO-B

Figure S2. Lineal correlation between experimental and reported permeability of 11 commercial drugs using the PAMPA-BBB assay. Pe (exp.) = 1.0999Pe (bibl.) + 1.2648 (R²= 0.9475)

Figure S3. The representative ¹H NMR , ¹³C NMR, IR and HRMS (ESI) spectrums of 5a, 5b, 5e, 5h, 5l, 5o and 5p.

¹H NMR spectrum of compound 5a in DMSO

¹³C NMR spectrum of compound 5a in DMSO

S6

HRMS (ESI) spectrum of compound 5a

¹H NMR spectrum of compound 5b in DMSO

¹³C NMR spectrum of compound 5b in DMSO

HRMS (ESI) spectrum of compound 5b

¹H NMR of compound 5e in DMSO

¹³C NMR of compound 5e in DMSO

HRMS (ESI) spectrum of compound 5e

¹H NMR of compound 5h in DMSO

¹³C NMR of compound 5h in DMSO

HRMS (ESI) spectrum of compound 5h

¹H NMR spectrum of compound 5l in DMSO

¹³C NMR spectrum of compound 5l in DMSO

IR (KBr) spectrum of compound 51

HRMS (ESI) spectrum of compound 51

¹H NMR spectrum of compound 50 in DMSO

¹³C NMR spectrum of compound 50 in DMSO

HRMS (ESI) spectrum of compound 50

¹H NMR of compound 5p in DMSO

¹³C NMR of compound 5p in DMSO

IR (KBr) spectrum of compound 5p

HRMS (ESI) spectrum of compound 5p

