# Supporting Information RSC Advances

# Water-Soluble Amino(ethanesulfonate) and [(*bis*(ethanesulfonate)] Anthracenes as Fluorescent Photoinduced Electron Transfer (PET) pH Indicators and Fe<sup>3+</sup> Chemosensors

Maria A. Cardona, Carl J. Mallia, Ulrich Baisch and David C. Magri<sup>1\*</sup>

Contact email address: david.magri@um.edu.mt

# **Table of Contents**

# Page No.

|             | Experimental data for the chemical intermediates of anthracene 1                       | 1  |
|-------------|----------------------------------------------------------------------------------------|----|
| Figure S1   | <sup>1</sup> H NMR spectrum of <b>1</b> in DMSO- $d_6$ at 250 MHz                      | 4  |
| Figure S2   | <sup>1</sup> H NMR spectrum of <b>1</b> in D <sub>2</sub> O at 250 MHz                 | 5  |
| Figure S3   | <sup>1</sup> H NMR spectrum of <b>2</b> in DMSO- $d_6$ at 250 MHz                      | 6  |
| Figure S4   | <sup>13</sup> C NMR spectrum of <b>1</b> in D <sub>2</sub> O/1,4-dioxane at 250 MHz    | 7  |
| Figure S5   | <sup>13</sup> C NMR spectrum of <b>2</b> in DMSO- $d_6$ at 250 MHz                     | 8  |
| Figure S6   | IR spectrum of 1 (KBr disc)                                                            | 9  |
| Figure S7   | IR spectrum of 2 (KBr disc)                                                            | 10 |
| Figure S8   | Fluorescence titration curves of 20 $\mu$ M solutions of <b>1</b> (a) and <b>2</b> (b) | 11 |
|             | containing 0.2 mM EDTA upon titration with 0.1 M HCl. Inset: A                         |    |
|             | plot of log $[(I_{max} - I)]/[(I - I_{min})]$ against pH to determine the p $K_a^*$    |    |
| Figure S9   | Stern-Volmer plot for 1 (a) and 2 (b) in the presence of increasing                    | 12 |
|             | concentrations of $Fe^{3+}$ at pH 3. Inset: The Stern-Volmer plot at low               |    |
|             | concentrations of Fe <sup>3+</sup> . $\lambda_{ex} = 352 \text{ nm}$                   |    |
| Figure S10: | (a) Fluorescence spectra obtained on increasing the mole fraction of                   | 13 |
|             | 1. (b) Job's plot showing the fluorescence intensity at 418 nm against                 |    |
|             | the mole fraction of 1 excited at 370 nm.                                              |    |
|             | Crystallographic data for anthracene 2                                                 | 14 |

#### Experimental

The syntheses of the intermediate compounds were carried out according to literature procedures.

### 9-(Bromomethyl)anthracene<sup>S1</sup>

In a 500 ml round-bottomed flask fitted with a reflux condenser and a 1 inch long magnetic stir bar, 9-anthracenemethanol (1.65 g, 7.92 mmol) and 250 mL of diethyl ether were added. The mixture was stirred and warmed for 1 hour at 45 °C. Hydrobromic acid (4 mL, 80 mmol) was added dropwise to the reaction mixture followed by 0.8 mL of concentrated sulphuric acid and 1.0 g of sodium bromide. The reaction mixture was refluxed for 48 hours. After cooling, saturated potassium carbonate was added to neutralize the solution, as tested with litmus paper. The product was extracted three times with 25 ml of dichloromethane. The organic layer was washed three times with 25 mL of deionised water, dried over anhydrous sodium sulfate, filtered and evaporated under reduced pressure to give fluffy yellow crystals in 96% yield.  $R_{\rm f} = 0.46$  (9:1 hexane:ethyl acetate); m.p. 132-133 °C (Lit. 137.5-142.5 °C);<sup>S1 1</sup>H NMR (250 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  5.55 (s, 2H, CH<sub>2</sub>Br), 7.45-7.55 (m, 2H, Ar-*H*), 7.58-7.71 (m, 2H, Ar-*H*), 8.04 (d, *J* = 8.5 Hz, 2H, Ar-*H*), 8.31 (d, *J* = 9.8 Hz, 2H, Ar-*H*), 8.50 (s, 1H, Ar-*H*); <sup>13</sup>C NMR (63 MHz, CDCl<sub>3</sub>):  $\delta$  27.0, 123.5, 125.4, 126.8, 127.9, 129.2, 129.3, 129.7, 131.6; IR (thin film, cm<sup>-1</sup>): 727, 787, 839, 883, 1155, 1164, 1198, 1258, 1449, 1526, 1622, 2851, 2920, 3053, 3080.

#### 9-(Azidomethyl)anthracene<sup>S1</sup>

9-(bromomethyl)anthracene (1.08 g, 4.00 mmol) was dissolved in 15 ml of *N*,*N*-dimethylformamide in a 100 ml round-bottomed flask, and the solution was stirred for 5 minutes. Sodium azide (1.05 g, 16.2 mmol) was added and the suspension was stirred at 50 °C for 2 hours. Upon cooling 25 ml of distilled water was added to the mixture. The contents were extracted twice with 25 mL portions of diethyl ether. The ether layers were combined, washed with distilled water (3 × 25 ml), dried over anhydrous sodium sulfate and filtered. The solvent was evaporated under reduced pressure on a rotary evaporator to give yellow crystals in 92% yield.  $R_{\rm f} = 0.53$  (9:1 hexane:ethyl acetate); m.p. 72 -76 °C (Lit. 84-86 °C);<sup>S1 1</sup>H NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  5.33 (s, 2H, *CH*<sub>2</sub>N<sub>3</sub>), 7.45-7.65 (m, 4H, Ar-*H*), 8.05 (d, J = 7.9 Hz, 2 H, Ar-*H*), 8.30 (d, J = 9.8 Hz, 2H, Ar-*H*), 8.51 (s, 1H, Ar-*H*); <sup>13</sup>C NMR (63

MHz, CDCl<sub>3</sub>):  $\delta$  46.2, 123.5, 125.2, 125.8, 126.8, 129.0, 129.3, 130.7, 131.4; IR (thin film, cm<sup>-1</sup>): 737, 795, 858, 871, 987, 959, 1045, 1157, 1229, 1335, 1445, 1622, 2058, 2093, 2920, 2947, 2999, 3057, 3078.

#### 9-(Aminomethyl)anthracene<sup>S2</sup>

A two-necked 100 ml round bottomed flask was fitted with a dropping funnel and a magnetic stirrer was placed in an ice bath at 0 °C under a nitrogen atmosphere. 9-(Azidomethyl)anthracene (0.72 g, 3.10 mmol) was dissolved in 4 mL THF and added dropwise to the triphenylphosphine (1.32 g, 5.03 mmol). The round-bottomed flask was then removed from the ice-bath and left to stir at room temperature for 2 hours. Water (0.5 mL) was added dropwise and the reaction stirred for an additional hour. The contents were transferred to a beaker and 25 mL of diethyl ether added. The solution was cooled to 0 °C and acidified dropwise with 10 mL of 5 M HCl. A yellow solid precipitated out, which was collected by suction filtration and washed with a small amount of ice-cold 50:50 acetone:water.

To regenerate the amine, the solid was suspended in 30 ml of ethyl acetate in an icebath and made basic by the dropwise addition of aqueous ammonia. The resulting solution was transferred to a 250 ml separatory funnel, washed with 50 mL of water and the aqueous layer extracted twice with 25 mL of ethyl acetate. The combined organic layers were washed twice with 50 ml distilled water, dried over anhydrous sodium sulfate and the solvent evaporated under reduced pressure to give yellow crystals in 88% yield.  $R_f = 0.52$  (7:3 CHCl<sub>3</sub>:MeOH); m.p. 104-106 °C (Lit. 102 °C);<sup>S2 1</sup>H NMR (250 MHz, CDCl<sub>3</sub>, ppm): 4.83 (s, 2H, *CH*<sub>2</sub>NH<sub>2</sub>), 7.42-7.60 (m, 4 H, Ar-*H*), 8.03 (d, *J* = 7.9 Hz, 1H, Ar-*H*), 8.34 (d, *J* = 8.5 Hz, 1H, Ar-*H*), 8.40 (s, 1H, Ar-*H*); <sup>13</sup>C NMR (63 MHz, CDCl<sub>3</sub>, ppm):  $\delta$  38.3, 123.7, 125.0, 126.1, 126.9, 129.3, 129.4, 131.8, 134.7; IR (KBr disc, cm<sup>-1</sup>): 731, 841, 881, 901, 914, 1061, 1120, 1157, 1177, 1190, 1279, 1331, 1439, 1493, 1589, 1620, 2901, 2963, 3045, 3167, 3238, 3347.



Figure S2: <sup>1</sup>H NMR spectrum of 1 in  $D_2O$  at 250 MHz.







Figure S5: <sup>13</sup>C NMR spectrum of 2 in DMSO- $d_6$  at 250 MHz.



Figure S6: IR spectrum of 1 (KBr disc).



Figure S7: IR spectrum of 2 (KBr disc).



**Figure S8:** Fluorescence titration curves of 20  $\mu$ M solutions of 1 (a) and 2 (b) containing 0.2 mM EDTA upon titration with 0.1 M HCl. Inset: A plot of log  $[(I_{max} - I)]/[(I - I_{min})]$  against pH to determine the  $pK_a^*$ .



**Figure S9:** Stern-Volmer plot for **1** (a) and **2** (b) in the presence of increasing concentrations of Fe<sup>3+</sup> at pH 3. **Inset**: The Stern-Volmer plot at low concentrations of Fe<sup>3+</sup>.  $\lambda_{ex} = 352$  nm.



**Figure S10:** (a) Fluorescence spectra obtained on increasing the mole fraction of **1**. (b) Job's plot showing the fluorescence intensity at 418 nm against the mole fraction of **1** excited at 370 nm.

| Empirical formula                           | $C_{18}H_{22}KNO_5S$                                  |
|---------------------------------------------|-------------------------------------------------------|
| Formula weight/g mol <sup>-1</sup>          | 403.52                                                |
| Temperature/K                               | 120                                                   |
| Crystal system                              | Monoclinic                                            |
| Space group                                 | $P2_{1}/c$                                            |
| a/Å                                         | 23.671(5)                                             |
| b/Å                                         | 8.6038(19)                                            |
| c/Å                                         | 9.530(2)                                              |
| α/°                                         | 90                                                    |
| β/°                                         | 99.236(2)                                             |
| $\gamma^{\prime \circ}$                     | 90                                                    |
| Volume/Å <sup>3</sup>                       | 1915.8(7)                                             |
| Z                                           | 4                                                     |
| ρ <sub>calc</sub> g/cm <sup>3</sup>         | 1.399                                                 |
| μ/mm <sup>-1</sup>                          | 0.383                                                 |
| F(000)                                      | 848.0                                                 |
| Crystal size/mm <sup>3</sup>                | 0.05 	imes 0.05 	imes 0.001                           |
| Radiation                                   | Synchrotron ( $\lambda = 0.6889$ )                    |
| 20 range for data collection/°              | 3.38 to 55.072                                        |
| Index ranges                                | $-31 \le h \le 31, -9 \le k \le 11, -12 \le l \le 12$ |
| <b>Reflections collected</b>                | 16779                                                 |
| Independent reflections                     | $4615 [R_{int} = 0.0416, R_{sigma} = 0.0431]$         |
| Data/restraints/parameters                  | 4615/0/323                                            |
| Goodness-of-fit on F <sup>2</sup>           | 1.018                                                 |
| Final <i>R</i> indexes [I>=2σ (I)]          | $R_1 = 0.0451, wR_2 = 0.1091$                         |
| Final <i>R</i> indexes [all data]           | $R_1 = 0.0655, wR_2 = 0.1194$                         |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.74/-0.38                                            |

Table S1 Crystal data and structure refinement for anthracene 2.

 Table S2 Bond lengths for anthracene 2.

| Atom | Atom             | Length/Å   | Atom | Atom | Length/Å |
|------|------------------|------------|------|------|----------|
| K1   | K11              | 4.4399(9)  | N15  | C16  | 1.474(3) |
| K1   | K1 <sup>2</sup>  | 4.4399(10) | N15  | C17  | 1.483(3) |
| K1   | K1 <sup>3</sup>  | 4.3023(12) | N15  | C14  | 1.487(3) |
| K1   | S19              | 3.5180(8)  | C18  | C17  | 1.523(3) |
| K1   | S19 <sup>4</sup> | 3.4373(8)  | C1   | C14  | 1.526(3) |
| K1   | O22              | 2.7528(16) | C1   | C13  | 1.414(4) |
| K1   | O100             | 2.7214(18) | C1   | C2   | 1.420(4) |
| K1   | $O20^{4}$        | 3.0978(18) | C8   | C9   | 1.396(5) |
| K1   | O20 <sup>5</sup> | 2.6702(17) | C8   | C7   | 1.385(4) |
| K1   | O21 <sup>4</sup> | 2.7777(16) | C13  | C4   | 1.424(4) |
| K1   | O21              | 3.3739(17) | C13  | C9   | 1.453(3) |
| K1   | O21 <sup>1</sup> | 2.7370(17) | C2   | C3   | 1.433(4) |
| S19  | K16              | 3.4374(8)  | C2   | C7   | 1.455(3) |
| S19  | O22              | 1.4677(16) | C12  | C4   | 1.369(4) |
| S19  | O20              | 1.4537(16) | C12  | C11  | 1.435(5) |
| S19  | O21              | 1.4645(16) | C3   | C15  | 1.365(4) |

| S19 | C18             | 1.790(2)   | C10 | C9  | 1.424(4) |
|-----|-----------------|------------|-----|-----|----------|
| O20 | K16             | 3.0978(18) | C10 | C11 | 1.350(5) |
| O20 | K1 <sup>5</sup> | 2.6701(17) | C5  | C6  | 1.340(5) |
| O21 | K1 <sup>2</sup> | 2.7370(17) | C5  | C15 | 1.425(4) |
| O21 | K16             | 2.7778(16) | C7  | C6  | 1.437(4) |

<sup>1</sup>-X,1/2+Y,1/2-Z; <sup>2</sup>-X,-1/2+Y,1/2-Z; <sup>3</sup>-X,2-Y,1-Z; <sup>4</sup>+X,3/2-Y,1/2+Z; <sup>5</sup>-X,2-Y,-Z; <sup>6</sup>+X,3/2-Y,-1/2+Z

| Atom Atom           | m Atom           | Angle/°    | Atom Atom           | Atom             | Angle/°    |
|---------------------|------------------|------------|---------------------|------------------|------------|
| K1 <sup>1</sup> K1  | K1 <sup>2</sup>  | 151.35(2)  | O21 <sup>4</sup> K1 | O20 <sup>4</sup> | 48.33(4)   |
| K1 <sup>3</sup> K1  | $K1^1$           | 120.15(2)  | O21 <sup>2</sup> K1 | O20 <sup>4</sup> | 125.78(5)  |
| K1 <sup>3</sup> K1  | K1 <sup>2</sup>  | 77.674(16) | O21 <sup>2</sup> K1 | O21 <sup>4</sup> | 77.46(5)   |
| S19 K1              | $K1^1$           | 60.228(14) | O214 K1             | O21              | 107.79(4)  |
| S19 <sup>4</sup> K1 | $K1^1$           | 61.046(16) | O21 <sup>2</sup> K1 | O21              | 162.88(4)  |
| S19 <sup>4</sup> K1 | K1 <sup>2</sup>  | 121.08(2)  | K1 <sup>6</sup> S19 | K1               | 104.06(2)  |
| S19 K1              | K1 <sup>2</sup>  | 91.164(19) | O22 S19             | K16              | 151.18(6)  |
| S19 K1              | K1 <sup>3</sup>  | 134.14(2)  | O22 S19             | K1               | 47.68(6)   |
| S19 <sup>4</sup> K1 | K1 <sup>3</sup>  | 62.302(18) | O22 S19             | C18              | 105.91(10) |
| S19 <sup>4</sup> K1 | S19              | 88.14(2)   | O20 S19             | K1               | 107.69(7)  |
| O22 K1              | $K1^1$           | 74.81(4)   | O20 S19             | K16              | 64.31(7)   |
| O22 K1              | K1 <sup>2</sup>  | 77.65(4)   | O20 S19             | O22              | 113.75(10) |
| O22 K1              | K1 <sup>3</sup>  | 111.98(4)  | O20 S19             | O21              | 112.26(9)  |
| O22 K1              | S19 <sup>4</sup> | 79.50(4)   | O20 S19             | C18              | 105.69(10) |
| O22 K1              | S19              | 23.22(3)   | O21 S19             | K16              | 51.67(6)   |
| O22 K1              | O20 <sup>4</sup> | 72.84(5)   | O21 S19             | K1               | 72.27(7)   |
| O22 K1              | O21              | 45.35(4)   | O21 S19             | O22              | 111.95(9)  |
| O22 K1              | O21 <sup>4</sup> | 96.04(5)   | O21 S19             | C18              | 106.59(10) |
| O100 K1             | K1 <sup>2</sup>  | 138.14(4)  | C18 S19             | K1               | 144.10(8)  |
| O100 K1             | $K1^1$           | 63.37(4)   | C18 S19             | K16              | 101.98(8)  |
| O100 K1             | K1 <sup>3</sup>  | 104.35(4)  | S19 O22             | K1               | 109.10(8)  |
| O100 K1             | S19 <sup>4</sup> | 94.61(5)   | K1 <sup>5</sup> O20 | K16              | 100.40(5)  |
| O100 K1             | S19              | 112.76(4)  | S19 O20             | K16              | 90.68(8)   |
| O100 K1             | O22              | 134.45(5)  | S19 O20             | K1 <sup>5</sup>  | 165.30(10) |
| O100 K1             | O20 <sup>4</sup> | 83.04(5)   | K1 <sup>1</sup> O21 | K1               | 92.60(4)   |
| O100 K1             | O21 <sup>4</sup> | 95.76(6)   | K1 <sup>6</sup> O21 | K1               | 125.81(5)  |
| O100 K1             | O21 <sup>2</sup> | 106.71(5)  | K1 <sup>1</sup> O21 | K16              | 102.54(5)  |
| O100 K1             | O21              | 89.21(5)   | S19 O21             | K11              | 149.98(9)  |
| O20 <sup>5</sup> K1 | $K1^1$           | 126.37(4)  | S19 O21             | K1               | 83.31(7)   |
| O20 <sup>5</sup> K1 | K1 <sup>3</sup>  | 113.47(4)  | S19 O21             | K16              | 103.90(8)  |
| O20 <sup>5</sup> K1 | K1 <sup>2</sup>  | 43.33(4)   | C16 N15             | C17              | 107.82(17) |
| O204 K1             | $K1^1$           | 36.26(3)   | C16 N15             | C14              | 109.97(18) |
| O204 K1             | K1 <sup>3</sup>  | 86.72(3)   | C17 N15             | C14              | 110.32(18) |
| O204 K1             | K1 <sup>2</sup>  | 138.30(4)  | C17 C18             | S19              | 112.01(14) |
| O204 K1             | S19 <sup>4</sup> | 25.02(3)   | N15 C17             | C18              | 113.14(17) |
| O204 K1             | S19              | 72.51(3)   | C13 C1              | C14              | 118.5(2)   |
| O20 <sup>5</sup> K1 | S19              | 83.48(4)   | C13 C1              | C2               | 120.6(2)   |
| O20 <sup>5</sup> K1 | S19 <sup>4</sup> | 161.78(4)  | C2 C1               | C14              | 120.9(2)   |

 Table S3 Bond angles for anthracene 2.

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                | (19) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                | 2(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                | 2(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                | 1(3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                | 6(2) |
| $O20^5$ K1 $O21^2$ $75.29(5)$ $C1$ $C2$ $C7$ $119$ $O21$ K1K1^1 $38.01(3)$ $C3$ $C2$ $C7$ $116$ $O21^4$ K1K1^1 $82.65(4)$ $C4$ $C12$ $C11$ $119$ $O21^4$ K1K1^2 $108.11(4)$ $C15$ $C3$ $C2$ $121$ $O21^2$ K1K1^2 $49.39(4)$ $C12$ $C4$ $C13$ $121$ $O21^4$ K1K1^3 $28.30(3)$ $C11$ $C10$ $C9$ $121$ | 1(2) |
| O21K1K11 $38.01(3)$ C3C2C7116O214K1K11 $82.65(4)$ C4C12C11119O214K1K12108.11(4)C15C3C2121O212K1K1249.39(4)C12C4C13121O214K1K1328.20(2)C11C10C9121                                                                                                                                                   | 2(2) |
| $O21^4$ K1K1^182.65(4)C4C12C11119 $O21^4$ K1K1^2108.11(4)C15C3C2121 $O21^2$ K1K1^249.39(4)C12C4C13121 $O21^4$ K1K1328.39(2)C11C10C9121                                                                                                                                                              | 7(2) |
| $O21^4$ K1K1²108.11(4)C15C3C2121 $O21^2$ K1K1²49.39(4)C12C4C13121 $O21^4$ K1K1³28.29(3)C11C10C9121                                                                                                                                                                                                  | 9(3) |
| O21 <sup>2</sup> K1       K1 <sup>2</sup> 49.39(4)       C12       C4       C13       121         O21 <sup>4</sup> K1       K1 <sup>3</sup> 28.39(3)       C11       C10       C9       121                                                                                                         | 9(2) |
| O214 V1 V13 29 20(2) C11 C10 C0 121                                                                                                                                                                                                                                                                 | 6(3) |
| $021^{\circ}$ KI KI <sup>2</sup> $30.39(3)$ CII CIU C9 121                                                                                                                                                                                                                                          | 3(3) |
| O21 <sup>2</sup> K1 K1 <sup>3</sup> 39.07(3) C8 C9 C13 119                                                                                                                                                                                                                                          | 4(3) |
| O21 <sup>2</sup> K1 K1 <sup>1</sup> 156.82(4) C8 C9 C10 121                                                                                                                                                                                                                                         | 6(3) |
| O21 K1 K1 <sup>2</sup> 114.15(3) C10 C9 C13 119                                                                                                                                                                                                                                                     | 0(3) |
| O21 K1 K1 <sup>3</sup> 143.63(3) C6 C5 C15 119                                                                                                                                                                                                                                                      | 6(3) |
| O21 <sup>2</sup> K1 S19 138.52(4) C8 C7 C2 119                                                                                                                                                                                                                                                      | 4(3) |
| O21 <sup>4</sup> K1 S19 109.90(4) C8 C7 C6 121                                                                                                                                                                                                                                                      | 9(2) |
| O21 <sup>2</sup> K1 S19 <sup>4</sup> 101.15(4) C6 C7 C2 118                                                                                                                                                                                                                                         | 7(3) |
| O21 K1 S19 <sup>4</sup> 83.38(3) C10 C11 C12 120                                                                                                                                                                                                                                                    | 5(3) |
| O21 K1 S19 24.42(3) C5 C6 C7 122                                                                                                                                                                                                                                                                    | 2(3) |
| O21 <sup>4</sup> K1 S19 <sup>4</sup> 24.43(3) C3 C15 C5 120                                                                                                                                                                                                                                         | 9(3) |
| O21 <sup>2</sup> K1 O22 118.78(5)                                                                                                                                                                                                                                                                   |      |

<sup>&</sup>lt;sup>1</sup>-X,-1/2+Y,1/2-Z; <sup>2</sup>-X,1/2+Y,1/2-Z; <sup>3</sup>-X,2-Y,1-Z; <sup>4</sup>+X,3/2-Y,1/2+Z; <sup>5</sup>-X,2-Y,-Z; <sup>6</sup>+X,3/2-Y,-1/2+Z

| Table S4 Hydrogen bonds for anthracene 2. |  |
|-------------------------------------------|--|
|-------------------------------------------|--|

| Table | 54 Hyu | rogen be          | onus ior antina | icene 2. |          |         |
|-------|--------|-------------------|-----------------|----------|----------|---------|
| D     | Н      | Α                 | d(D-H)/Å        | d(H-A)/Å | d(D-A)/Å | D-H-A/° |
| O100  | H10A   | O101 <sup>1</sup> | 0.83(3)         | 1.92(3)  | 2.742(3) | 173(3)  |
| O101  | H10C   | N15 <sup>2</sup>  | 0.91(4)         | 2.01(4)  | 2.893(3) | 163(3)  |
| O101  | H10D   | O100 <sup>3</sup> | 0.85(3)         | 1.98(4)  | 2.825(3) | 174(3)  |
| O100  | H10B   | O22 <sup>4</sup>  | 0.83(4)         | 1.95(4)  | 2.772(3) | 172(4)  |

<sup>1</sup>-X,1/2+Y,1/2-Z; <sup>2</sup>+X,1/2-Y,1/2+Z; <sup>3</sup>-X,1-Y,1-Z; <sup>4</sup>-X,-1/2+Y,1/2-Z

 Table S5 Torsion angles for anthracene 2.

| A      | В   | С   | D               | Angle/°     | А   | В   | С   | D   | Angle/°   |
|--------|-----|-----|-----------------|-------------|-----|-----|-----|-----|-----------|
| K11    | S19 | 022 | K1              | 13.30(18)   | C1  | C13 | C9  | C8  | 2.7(4)    |
| K1     | S19 | O20 | K1 <sup>2</sup> | 41.7(4)     | C1  | C13 | C9  | C10 | -175.4(2) |
| $K1^1$ | S19 | O20 | K1 <sup>2</sup> | 139.2(4)    | C1  | C2  | C3  | C15 | -178.5(3) |
| K1     | S19 | O20 | $K1^1$          | -97.44(4)   | C1  | C2  | C7  | C8  | 0.9(4)    |
| $K1^1$ | S19 | 021 | K1 <sup>3</sup> | 151.1(2)    | C1  | C2  | C7  | C6  | 179.7(2)  |
| K1     | S19 | 021 | K1 <sup>3</sup> | -83.58(18)  | C14 | N15 | C17 | C18 | 64.4(3)   |
| K1     | S19 | 021 | $K1^1$          | 125.30(6)   | C14 | C1  | C13 | C4  | -2.6(3)   |
| $K1^1$ | S19 | 021 | K1              | -125.30(6)  | C14 | C1  | C13 | C9  | 176.0(2)  |
| $K1^1$ | S19 | C18 | C17             | -119.87(16) | C14 | C1  | C2  | C3  | 1.4(4)    |
| K1     | S19 | C18 | C17             | 15.9(3)     | C14 | C1  | C2  | C7  | -177.7(2) |
| S19    | C18 | C17 | N15             | 168.67(15)  | C8  | C7  | C6  | C5  | 176.6(3)  |
| O22    | S19 | O20 | $K1^1$          | -148.26(7)  | C13 | C1  | C14 | N15 | 76.6(3)   |

| O22 | S19 | O20 | K1 <sup>2</sup> | -9.1(4)     | C13 | C1  | C2  | C3  | 177.8(2)  |
|-----|-----|-----|-----------------|-------------|-----|-----|-----|-----|-----------|
| O22 | S19 | 021 | K1 <sup>3</sup> | -56.6(2)    | C13 | C1  | C2  | C7  | -1.3(3)   |
| O22 | S19 | 021 | $K1^1$          | 152.32(8)   | C2  | C1  | C14 | N15 | -106.9(3) |
| O22 | S19 | O21 | K1              | 27.01(8)    | C2  | C1  | C13 | C4  | -179.1(2) |
| O22 | S19 | C18 | C17             | 52.75(19)   | C2  | C1  | C13 | C9  | -0.5(3)   |
| O20 | S19 | O22 | K1              | 92.77(10)   | C2  | C3  | C15 | C5  | -0.2(4)   |
| O20 | S19 | O21 | K1 <sup>3</sup> | 174.07(17)  | C2  | C7  | C6  | C5  | -2.2(4)   |
| O20 | S19 | O21 | $K1^1$          | 22.95(10)   | C3  | C2  | C7  | C8  | -178.3(2) |
| O20 | S19 | 021 | K1              | -102.35(8)  | C3  | C2  | C7  | C6  | 0.5(3)    |
| O20 | S19 | C18 | C17             | 173.76(16)  | C4  | C13 | C9  | C8  | -178.6(2) |
| O21 | S19 | O22 | K1              | -35.81(11)  | C4  | C13 | C9  | C10 | 3.3(3)    |
| O21 | S19 | O20 | K1 <sup>2</sup> | 119.3(4)    | C4  | C12 | C11 | C10 | 1.4(4)    |
| O21 | S19 | O20 | $K1^1$          | -19.84(9)   | C9  | C8  | C7  | C2  | 1.4(4)    |
| O21 | S19 | C18 | C17             | -66.62(19)  | C9  | C8  | C7  | C6  | -177.4(2) |
| C16 | N15 | C17 | C18             | -175.46(19) | C9  | C13 | C4  | C12 | -3.5(4)   |
| C16 | N15 | C14 | C1              | 67.2(3)     | C9  | C10 | C11 | C12 | -1.5(4)   |
| C18 | S19 | O22 | K1              | -151.59(9)  | C7  | C8  | C9  | C13 | -3.2(4)   |
| C18 | S19 | O20 | K1 <sup>2</sup> | -124.9(4)   | C7  | C8  | C9  | C10 | 174.8(3)  |
| C18 | S19 | O20 | $K1^1$          | 95.97(9)    | C7  | C2  | C3  | C15 | 0.6(4)    |
| C18 | S19 | O21 | K1 <sup>3</sup> | 58.8(2)     | C11 | C12 | C4  | C13 | 1.2(4)    |
| C18 | S19 | 021 | K1              | 142.38(8)   | C11 | C10 | C9  | C8  | -178.9(3) |
| C18 | S19 | O21 | $K1^1$          | -92.32(9)   | C11 | C10 | C9  | C13 | -0.9(4)   |
| C17 | N15 | C14 | C1              | -174.0(2)   | C6  | C5  | C15 | C3  | -1.4(5)   |
| C1  | C13 | C4  | C12             | 175.1(2)    | C15 | C5  | C6  | C7  | 2.6(4)    |

<sup>1</sup>+X,3/2-Y,-1/2+Z; <sup>2</sup>-X,2-Y,-Z; <sup>3</sup>-X,-1/2+Y,1/2-Z

# References

- S1. D. E. Stack, A. L. Hill, C. B. Diffendaffer and N. M. Burns, Org. Lett., 2002, 4, 4487.
- S2. K. Ohara, M. Smietana, A. Restouin, S. Mollard, J.-P. Borg, Y. Collette, J.-J. Vasseur, *J. Med. Chem.*, 2007, **50**, 6465.