Supporting Information

One-step Synthesis of Ni₃S₂ Nanoplatelets on Graphene for High Performance Supercapacitors

Xuewu OU, Zhengtang LUO*

Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

E-mail: <u>keztluo@ust.hk</u>

From the CV curve, the specific capacitance is calculated from the following equation:

$$C = \frac{1}{v(V_2 - V_1)} \int_{V_1}^{V_2} I(V) dV,$$

where v is the scanning rate, $V_2 - V_1$ is the scanning range and I(V) is the current density (A/g) corresponding to the voltage. From charge/discharge curve, the capacitance was calculated from:

$$\frac{dQ}{dU} = \frac{Idt}{dU} = \frac{I}{dU/dt},$$

where I is the current density for the charge/discharge test, $\frac{dU}{dt}$ is the slope of the discharge curve.

Fig. S1 XRD spectrum of $NiSO_4 \cdot 3N_2H_4$. Below is the standard JCPDS card of $NiSO_4 \cdot 3N_2H_4$.

Fig. S2 XRD spectrum of Ni_3S_2 reduced from $NiSO_4$ 7H₂O (Ni_3S_2 -1) and $NiSO_4$ 3N₂H₄ (Ni_3S_2 -2), respectively. Below is the standard JCPDS card of Ni_3S_2 .

Fig. S3 XRD spectrum comparison of $NiSO_4$ ·7H₂O with/without H₂ reduction. Below is the standard JCPDS card of NiSO₄.

Fig. S4 High resolution S2p spectrum of $NiSO_4$ before and after H₂ reduction.

Fig. S5 XPS spectrum of Ni₃S₂/rGO-2.

Fig. S6 Raman spectrums of GO in comparison with reduced graphene oxide (rGO) in $Ni_3S_2/rGO-1$ and $Ni_3S_2/rGO-2$.

Fig. S7 TEM results of Ni_3S_2/rGO reduced from $NiSO_4/GO$. (1) Round and irregular shape Ni_3S_2 nanoparticles with non-uniform size on graphene surface. (2) High resolution TEM of the Ni_3S_2 nanoparticles.

Fig. S8 Electrochemical test of electrodes made from $Ni_3S_2/rGO-1$ and $Ni_3S_2/rGO-2$. (a) Cyclic voltammetry (CV) curves for $Ni_3S_2/rGO-1$ at the scanning rate at the range of 2~50 mV s⁻¹. (b) Corresponding discharge results at current density from 1 A g⁻¹ to 10 A g⁻¹ for $Ni_3S_2/rGO-1$. (c) CV curve for $Ni_3S_2/rGO-2$. (d) Corresponding discharge result for $Ni_3S_2/rGO-2$.

Fig. S9 Electrochemical test of electrodes made from pure Ni_3S_2 -2 reduced from $NiSO_4$ · $3N_2H_4$ and pure reduced graphene oxide (rGO). (a) Cyclic voltammetry (CV) curves for Ni_3S_2 -2 at the scanning rate at the range of 2~50 mV s⁻¹. (b) Corresponding discharge results at current density from 1 A g⁻¹ to 10 A g⁻¹ for Ni_3S_2 /rGO-1. (c) CV curve for rGO. (d) Corresponding discharge result for rGO.

Fig. S10 Cycling stability of $Ni_3S_2/rGO-2$ at current density of 5 A g⁻¹. Inset is a part of the charge/discharge results.