Supporting information

Hydrous salts of 1-aminoethylidenediphosphonic acid and piperazidine: temperature induced reversible structural transformation in humid environment

The authors: Di Tian ${ }^{\text {a }}$, Lang Li, ${ }^{\text {a }}$ Liang-jie Yuan ${ }^{\mathrm{a}, *}$, Shuo-ping Chen ${ }^{\mathrm{b}, *}$
${ }^{\text {a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China, }}$ *Corresponding author. E-mail: ljyuan@whu.edu.cn. Tel: +86-27-8721-8264. Fax: +86-27-87218264.
${ }^{\mathrm{b}}$ College of Materials Science and Engineering, Guilin University of technology, Guilin 541004, P. R. China. *Corresponding author. E-mail: chenshuoping_777@163.com. Tel: +86-7735896290.

Figure S-1. The ORTEP of compound 1 with thermal ellipsoids at the 30% probability level.

Figure S-2. The ORTEP of compound 2 with thermal ellipsoids at the 30% probability level.

Figure S-3. The ORTEP of compound 3 with thermal ellipsoids at the 30% probability level.

Figure S-4. IR spectra of compounds 1-3.

Figure S-5. TG curves of compounds 1-3 in air (black line:compound1; blue line: compound 2; red line:compound 3). Compound 1 can be stable up to $150^{\circ} \mathrm{C}$ in air, then, it decomposes until $185^{\circ} \mathrm{C}$, one lattice water is lost on the first stage with the weight decreasing 3.96% (theoretical value is 3.50%). The weight loss occurring between $292^{\circ} \mathrm{C}$ and $800^{\circ} \mathrm{C}$ corresponds to the decomposition of the dehydration products. The final product in $800^{\circ} \mathrm{C}$ is probably assumed to be $\mathrm{P}_{2} \mathrm{O}_{3}$, and the observed total weight loss (42.21%) is similar to the calculated value (42.78%). The thermogravimetric curves of compound 2 and 3 are similar. The first step start at $50^{\circ} \mathrm{C}$ and end at $185^{\circ} \mathrm{C}$, corresponding to the release of lattice water molecules. The observed weight loss (12.53\%) of compound 2 is approximate to the calculated value (12.67\%), the observed weight loss (18.50%) of compound 3 is also approximate to the calculated value (17.87%). The second step cover the temperature from $292^{\circ} \mathrm{C}$ and $800^{\circ} \mathrm{C}$. The final product of compound 2 are probably assumed to be $\mathrm{P}_{2} \mathrm{O}_{3}$, and the observed total weight loss (38.56\%) is similar to the calculated value (38.71\%). The final products of compound 3 are probably assumed to be the mixture of $\mathrm{P}_{2} \mathrm{O}_{3}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$, the observed total weight loss (44.25\%) contains $25.87 \% \mathrm{P}_{2} \mathrm{O}_{3}$ and $74.13 \% \mathrm{P}_{2} \mathrm{O}_{5}$.

Table S-1. Hydrogen bonds of compounds $1\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

Donor-H \cdots Acceptor	D(Donor...Acceptor)	$<$ (Donor-H \cdots Acceptor)
$\mathrm{O}(5)-\mathrm{H}(5) \ldots \mathrm{O}(1) \# 2$	$2.5234(15)$	151.2
$\mathrm{O}(2)-\mathrm{H}(2) \ldots \mathrm{O}(6) \# 3$	$2.5359(14)$	169.5
$\mathrm{~N}(2)-\mathrm{H}(2 \mathrm{~B}) \ldots \mathrm{O}(3) \# 4$	$2.7266(16)$	157.3
$\mathrm{~N}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(4) \# 5$	$2.6963(17)$	161.6
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{C}) \ldots \mathrm{O}(1)$	$3.0146(15)$	114.5
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{C}) \ldots \mathrm{O}(2) \# 3$	$3.0281(15)$	157.2
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(1) \# 6$	$2.7956(15)$	166.0
$\mathrm{~N}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(6) \# 7$	$2.7543(15)$	172.8

Symmetry transformations used to generate equivalent atoms: \#1 -x,-y+1,-z; \#2 x,y+1,z; \#3 $\mathrm{x}+1 / 2, \mathrm{y}-1 / 2,-\mathrm{z}+3 / 2 ; \# 4 \mathrm{x},-\mathrm{y}+1, \mathrm{z}-1 / 2 ; \# 5 \mathrm{x}, \mathrm{y}, \mathrm{z}-1 ; \# 6-\mathrm{x}+1 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2 ; \# 7-\mathrm{x}+1 / 2,-\mathrm{y}+1 / 2,-\mathrm{z}+2$.

Table S-2. Hydrogen bonds of compounds $2\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

Donor-H \cdots Acceptor	$\mathrm{D}($ Donor...Acceptor $)$	$<($ Donor-H \cdots Acceptor)
$\mathrm{O}(6)-\mathrm{H}(6) \ldots \mathrm{O}(4) \# 2$	$2.5614(18)$	172.3
$\mathrm{O}(1)-\mathrm{H}(7) \ldots \mathrm{O}(2) \# 3$	$2.5794(19)$	175.3
$\mathrm{~N}(3)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(2) \# 4$	$2.8075(19)$	149.1
$\mathrm{~N}(3)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(8) \# 4$	$2.738(2)$	141.7
$\mathrm{~N}(3)-\mathrm{H}(1 \mathrm{C}) \ldots \mathrm{O}(4) \# 4$	$2.8021(18)$	149.7
$\mathrm{~N}(1)-\mathrm{H}(2 \mathrm{D}) \ldots \mathrm{O}(5)$	$2.750(2)$	164.3
$\mathrm{~N}(1)-\mathrm{H}(2 \mathrm{E}) \ldots \mathrm{O}(7) \# 5$	$2.680(2)$	165.3
$\mathrm{O}(7)-\mathrm{H}(3) \ldots \mathrm{O}(5) \# 6$	$2.739(2)$	$155(3)$
$\mathrm{O}(7)-\mathrm{H}(4) \ldots \mathrm{O}(3)$	$2.671(2)$	$176(3)$
$\mathrm{O}(8)-\mathrm{H}(5) \ldots \mathrm{O}(3)$	$2.830(2)$	$173(3)$

$\mathrm{O}(8)-\mathrm{H}(2) \ldots \mathrm{O}(5) \# 6$	$2.927(2)$	$138(3)$
$\mathrm{O}(8)-\mathrm{H}(2) \ldots \mathrm{O}(3) \# 6$	$3.268(2)$	$137(3)$

Symmetry transformations used to generate equivalent atoms: \#1-x+2,-y+2,-z+1; \#2-x+1,-y+1,-z; \#3 -x+1,-y,-z; \#4 x+1,y,z; \#5 -x+2,-y+1,-z+1; \#6 -x+1,-y+1,-z+1.

Table S-3. Hydrogen bonds of compounds 3 [\AA and $\left.{ }^{\circ}\right]$.

Donor-H \cdots Acceptor	D(Donor...Acceptor)	<(Donor-H \cdots Acceptor)
$\mathrm{O}(1)-\mathrm{H}(1) \ldots \mathrm{O}(4) \# 2$	2.5388(18)	173(4)
$\mathrm{O}(5)-\mathrm{H}(5) \ldots \mathrm{O}(6) \# 3$	2.5141(19)	172(4)
O(1W)-H(1W1)...O(5)\#4	2.879(2)	152(4)
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(2 \mathrm{~W} 1) \ldots \mathrm{O}(2 \mathrm{~W})$	2.821(3)	153(4)
$\mathrm{O}(2 \mathrm{~W})-\mathrm{H}(1 \mathrm{~W} 2) \ldots \mathrm{O}(3 \mathrm{~W}) \# 5$	2.757(3)	171(5)
$\mathrm{O}(2 \mathrm{~W})-\mathrm{H}(2 \mathrm{~W} 2) \ldots \mathrm{O}(1 \mathrm{~W}) \# 6$	2.797(3)	167(5)
$\mathrm{O}(3 \mathrm{~W})-\mathrm{H}(1 \mathrm{~W} 3) \ldots \mathrm{O}(3) \# 7$	3.007(2)	156(2)
$\mathrm{O}(3 \mathrm{~W})-\mathrm{H}(1 \mathrm{~W} 3) \ldots \mathrm{O}(6) \# 7$	2.982(2)	123(2)
$\mathrm{O}(3 \mathrm{~W})-\mathrm{H}(2 \mathrm{~W} 3) \ldots \mathrm{O}(3) \# 8$	2.854(2)	174(3)
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(2 \mathrm{~W})$	2.786(2)	167.2
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(2) \# 9$	2.7891(18)	160.4
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{C}) \ldots \mathrm{O}(1) \# 2$	2.951(2)	157.6
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{C}) \ldots \mathrm{O}(4) \# 2$	3.078(2)	118.2
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{D}) \ldots \mathrm{O}(2)$	2.781(2)	149.5
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{D}) \ldots \mathrm{O}(4) \# 4$	2.953(2)	119.6
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{E}) \ldots \mathrm{O}(3) \# 4$	2.926(2)	145.8
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{E}) \ldots \mathrm{O}(6) \# 4$	3.037(2)	129.3

Symmetry transformations used to generate equivalent atoms: \#1-x+1/2,-y+3/2,-z; \#2$\mathrm{x}+1 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2 ; \# 3-\mathrm{x}+1, \mathrm{y},-\mathrm{z}+1 / 2 ; \# 4 \mathrm{x}, \mathrm{y}+1, \mathrm{z} ; \# 5 \mathrm{x}+1 / 2,-\mathrm{y}+1 / 2, \mathrm{z}-1 / 2 ; \# 6-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1 ; \# 7$ $\mathrm{x}+1 / 2,-\mathrm{y}+1 / 2,-\mathrm{z}+1 ; \# 8 \mathrm{x}, \mathrm{y}, \mathrm{z}+1 ; \# 9-\mathrm{x}+1 / 2, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$.

