Electrocatalytic Activity of Nitrogen-Enriched Mesoporous Carbon Framework and its Hybrids with Metal Nanoparticles Fabricated through Pyrolysis of Block Copolymers

Yen-Hsing Lu, Jiun-You Liou, Chien-Fu Lin, and Ya-Sen Sun*

Koutecky-Levich plots

$$\frac{1}{j} = \frac{1}{j_L} + \frac{1}{j_k}$$
(1)

in which j (mA/cm²) is the measured current density, j_k denotes the kinetic current density and j_L is the limiting diffusion current density given by

$$j_L = Bw^{1/2}$$
(2)

here ω is the angular velocity of the rotating disk ($\omega = 2\pi R$ where *R* is the linear speed/rpm of rotation) and *B* is the Levich parameter, which can be used to calculate the number (*n*) of electrons transferred for each oxygen molecule as follows,

$$B = 0.62nFD^{2/3}v^{-1/6}C_0 \tag{3}$$

in which *F* is the faradaic constant (86486 C mol⁻¹), *D* is the diffusion coefficient of O_2 in the electrolyte (1.73×10⁻⁵ cm² s⁻¹) in KOH (0.1 M), v is the kinematic viscosity of the electrolyte (0.01 cm² s⁻¹) and C_0 is the concentration of oxygen (1.21×10⁻⁶ mol L⁻¹). From equations (1 and 2), *n* and *j*_k were obtained from the slope and the ordinate intercept of the K–L plots of *j*⁻¹ versus *w*^{-1/2} at a given potential.

Figure S1 (a) XPS survey spectrum, (b) C1s spectrum and (c) N1s spectrum of $NEMCF_{430}$

Figure S2 (a) RDE voltammograms recorded for NEMCF₄₀₀ supported on a GC electrode in an O₂-satutated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ and different rotation rates; (b) Kouteckt-Levich plots of j^{-1} vs w^{-1/2} at -0.4, -0.6 and -0.8V obtained from (a).

Figure S3 AFM topographic images of Ag NPs after PS-*b*-P2VP BCPs are loaded with (a) 0.1 M AgNO₃ in ethanol and (b) 0.1 M Ag(NH₃)₂+ ions in an aqueous solution for 30 min and then subjected to 30-min Ar plasma for reduction of Ag ions and removal of the BCP templates.

Figure S4 AFM topographic image of Ag@NEMCF₄₃₀.

Figure S5 thermogravimetry analysis (TGA) and differential thermogravimetry (DTG) curves of the P2VP homopolymer and its hybrid loaded with Ag NPs (Ag@P2VP).

Figure S5 indicates TGA and DTG curves of the neat P2VP homopolymer and its hybrid loaded with Ag NPs. The decomposition temperature (T_d) of P2VP occurred at 427.6 °C while Ag@P2VP reveals two T_ds . One T_d is at 276.3 °C and the other T_d is at 407.6 °C.

Figure S6 UV-vis absorption of Ag@NEMCF₄₀₀, Ag-Au₁@NEMCF₄₀₀ and Ag-Au₁₂@NEMCF₄₀₀.

Figure S7 (a) UV-vis absorption of Ag and Ag-Au NPs generated via GRR of varied time periods, (b) time-dependent position of the absorption peak extracted from (a) and SEM of Ag-Au NPs generated by 30min-GRR.

Figure S8 SEM images of (a) Ag@NEMCF400, (b) Ag-Au₁@NEMCF₄₀₀ and (c) Ag-Au₁₂@NEMCF₄₀₀.

Figure S9 (a) cyclic voltammgram of Ag@NEMCF₄₃₀ at a scan rate of 100 mV cm⁻¹ in N₂- or O₂-saturated 0.1 M KOH solutions (b) RDE voltammograms recorded for Ag@NEMCF₄₃₀ supported on a GC electrode in an O₂-satutated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ and different rotation rates; (c) K-L plots of j⁻¹ vs w^{-1/2} at -0.4, -0.6 and -0.8V obtained from (b).

Figure S10 (a) cyclic voltammgram of (A) Ag-Au_{0.5}@NEMCF₄₃₀ (B) Ag-Au₁@NEMCF₄₃₀, (C)Ag-Au₃@NEMCF₄₃₀ and (D) Ag-Au₁@NEMCF₄₃₀ at a scan rate of 100 mV cm⁻¹ in N₂- or O₂-saturated 0.1 M KOH solutions (b) RDE voltammograms recorded for Ag-Au/NEMCF hybrids supported on a GC electrode in an O₂-satutated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ and different rotation rates; (c) K-L plots of j⁻¹ vs w^{-1/2} at -0.4, -0.6 and -0.8V obtained from (b).