
Supplementary Materials

Captions:

- **Table S1.** The UV-Vis spectrum of antibody–AuNP conjugates under different pH value by adding different volume of 0.1 M K₂CO₃.
- **Table S2.** The chemical structures and IC_{50} of ELISA and strip of five compounds
- **Table S3.** The semi-quantitative detection results of developed ICA in milk samples.
 - **Table S4.** The quantitative results of the spiked samples in the developed strip

Table S1. The UV-Vis spectrum of antibody–AuNP conjugates under different pH value

Table S2. The chemical structures and IC_{50} of ELISA and strip of five compounds

	Compound	Structure	IC ₅₀ (ng	IC_{50} (ng/mL)		
	Compound	Structure	ELISA	Strip		
LIN	/	THE STATE OF THE S	0.3	2.5		
NEO	91.0 91.0	11. (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.46	15		
STR	H9	100 - 101 -	0.41	12		
KAN	ко <u></u> З У. <u>.</u>	TEP TO SK INK	0.07	5		
GEN	нс ≡	AIL HO HO HO MICH	0.09	5		

Table S3. The semi-quantitative detection results of developed ICA in milk samples.

LIN/NEO/STR/KAN/GEN	Visual results of ICA (n=20)				
Concentration (ng/mL)	Test	Test	Test	Test	Test
continuation (ag iii=)	line-1	line-2	line-3	line-4	line-5
0/0/0/0/0	+a	+	+	+	+
12.5/50/25/25/25	\pm^b	±	±	±	±
25/100/50/50/50	_ c	_	_	_	_
50/200/100/100/100	_	_	_	_	_

^a The red band is obviously observed.

Table S4. The quantitative results of the spiked samples in the developed strip

LIN/NEO/STR/KAN/G	Quantitative results by strip scan reader (n=20)									
_	Test	Test	Test	Test	Test					
	line-1	line-2	line-3	line-4	line-5					
0/0/0/0/0	ND^a	ND	ND	ND	ND					
4/4/6/6/8	3.9 ± 0.11^b	3.7±0.03	6.1±0.08	5.7±0.21	8.1±0.47					
8/8/12/12/24	6.9±0.36	9.2±0.41	13.7±0.05	14.6±1.03	22.5±0.04					
12/12/24/24/72	12.3±0.51	13.7±0.26	25.5±0.44	23.9±0.28	74.1±0.36					

^a Not detected.

^b Light red band is observed.

^c No band is observed.

^b Mean value \pm SD