Electronic Supplementary Information

High-field Antiferroelectric-like Behavior in Uniaxially Stretched Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) *grafted*-poly(methyl methacrylate) Films with High Energy Density

Honghong Gong^a, Bei Miao^a, Xiao Zhang^b, Junyong Lu^{*b}, Zhicheng Zhang^{*a}

^aDepartment of Applied Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an, P. R. China, 710049

^bNational Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering, Wuhan, P. R. China, 430034

*Email: zhichengzhang@mail.xjtu.edu.cn jylu@xinhuanet.com

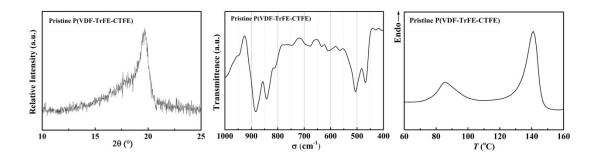


Fig. S1. XRD, FTIR spectrum and DSC curve of pristine P(VDF-TrFE-CTFE)(80/18/2).

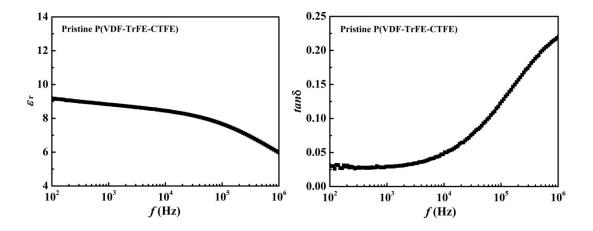


Fig. S2. Dielectric constant and loss of pristine P(VDF-TrFE-CTFE)(80/18/2).

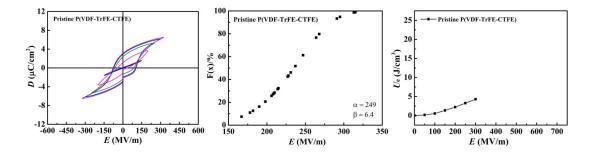


Fig. S3. Bipolar D-E loops, Weibull distribution of the breakdown electric field and discharged energy density (U_e) as a function of electric field for pristine P(VDF-TrFE-CTFE)(80/18/2).

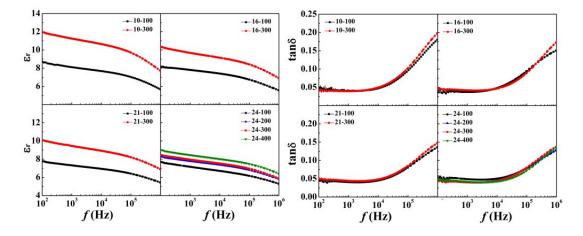


Fig. S4 Dielectric constant and loss of P(VDF-TrFE-CTFE)-g-PMMA films with varied PMMA contents before and after uniaxial stretching.