Supporting Information:

One-Pot C–C/C–O Bonds Formation: Synthesis of Spirocyclic Lactones

Pedireddi Niharika and Gedu Satyanarayana*

Department of Chemistry, Indian Institute of Technology, Hyderabad

Kandi - 502 285, Sangareddy, Telangana, INDIA

Phone: (040) 2301 6033; Fax: (040) 2301 6003 /32

E-mail: gvsatya@iith.ac.in

¹H-NMR and ¹³C-NMR spectra for all new compounds S15-S37

Experimental Section

General: IR spectra were recorded on a Bruker Tensor 37 (FTIR) spectrophotometer. ¹H NMR spectra were recorded on Bruker Avance 400 (400 MHz) spectrometer at 295 K in CDCl₃; chemical shifts (δ ppm) and coupling constants (J in Hz) are reported in standard fashion with reference to either internal standard tetramethylsilane (TMS) ($\delta_{\rm H}$ =0.00 ppm) or CHCl₃ ($\delta_{\rm H}$ = 7.25 ppm). ¹³C NMR spectra were recorded on Bruker Avance 400 (100 MHz) spectrometer at RT in CDCl₃; chemical shifts (δ in ppm) are reported relative to CHCl₃ [δ _C = 77.00 ppm (central line of triplet)]. In the ¹³C NMR, the nature of carbons (C, CH, CH₂ and CH₃) was determined by recording the DEPT-135 spectra, and is given in parentheses and noted as s = singlet (for C), d =doublet (for CH), t = triplet (for CH₂) and q = quartet (for CH₃). In the ¹H-NMR, the following abbreviations were used throughout: s = singlet, d = doublet, t = triplet, q = quartet, qui =quintet, m = multiplet and br. s = broad singlet. The assignment of signals was confirmed by ${}^{1}H$, ${}^{13}C$ CPD and DEPT spectra. High-resolution mass spectra (HR-MS) were recorded on an Agilent 6538 UHD Q-TOF using multimode source. All small scale dry reactions were carried out using standard syringe-septum technique. Regarding Horner-Wadsworth-Emmons reaction, TEPA from Avra Synthesis with a purity of 98%, NaH from Sigma-Aldrich (60% immersion in mineral oil), and benzaldehydes/acetophenones from Sisco Research Laboratories having 97-98% purity were used. Solvent THF was dried over sodium metal. Similarly, for cyclization reaction anhydrous FeCl₃ from Merck Chemicals and phenols from Sisco Research Laboratories were used. DCE was dried over calcium hydride and used. Reactions were monitored by TLC on silica gel using a mixture of petroleum ether and ethyl acetate as eluents. Reactions were generally run under an argon or nitrogen atmosphere. Solvents were distilled prior use; petroleum ether with a boiling range of 60 to 80 °C was used. Acme's silica gel (60-120 mesh) was used for column chromatography (approximately 20 g per one gram of crude material).

General Procedure (GP) for Cyclization: To an oven dried schlenk tube under nitrogen atmosphere, α,β -unsaturated ester 8 or 11 (77–146 mg, 0.5 mmol), phenol 9 (141–216 mg, 1.5 mmol) and anhydrous FeCl₃ (243 mg, 1.5 mmol) were added followed by benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. Progress of the reaction was monitored by TLC until the reaction was completed. The reaction mixture was quenched by the addition of aqueous NaHCO₃ and extracted in ethyl acetate (3 × 20 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in *vacuo*. Purification of the residue on silica gel column chromatography using petroleum ether/ethyl acetate as eluent furnished novel spirolactones 10 & 12 (45–87%) as viscous liquid/solid.

The required α , β -unsaturated esters **8a**, **8b**, **8c**, **11a**, **11b**, **11c**, **11d** and **11e** were prepared and known in the literature.¹

Spiro[chromene-4,1'-cyclopentan]-2(3*H***)-one (10aa):** GP was carried out on the ester **8a** (77 mg, 0.5 mmol), phenol **9a** (141.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_f(8a)$ =0.83, $R_f(10aa)$ =0.66, (petroleum ether/ethyl acetate 98:2, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 98:2 as eluent) furnished the lactone **10aa** (51 mg, 51%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =3054, 1767, 1422, 1264, 895, 731 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ =7.30–7.20 (m, 2H, ArH), 7.14 (ddd, 1H, *J*=7.8, 7.8 and 1.5 Hz, ArH), 7.07 (dd, 1H, *J*=7.8 and 1.5 Hz, ArH), 2.69 (s, 2H, CH₂CO), 2.05–1.90 (m, 2H, 2 × CH_aH_b), 1.86 (d, 1H, *J*=10.3 Hz, CH_aH_b), 1.85 (d, 1H, *J*=6.8 Hz, CH_aH_b), 1.83 (d, 1H, *J*=7.3 Hz, CH_aH_b), 1.82 (d, 1H, *J*=10.3 Hz, CH_aH_b), 1.77–1.62 (m, 2H, 2 × CH_aH_b) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =168.4 (s, O–C=O), 150.9 (s, ArC), 131.5 (s, ArC), 128.0 (d, ArCH), 124.5 (2 × d, 2C, 2 × ArCH), 117.1 (d, ArCH), 43.8 (s, C_q), 41.3 (t, CH₂CO), 37.8 (t, 2C, 2 × CH₂), 24.5 (t, 2C, 2 × CH₂) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₃H₁₄NaO₂]⁺=[M+Na]⁺: 225.0886; found 225.0886.

¹ R. J. Comito, F. G. Finelli and D. W. C. MacMillan, J. Am. Chem. Soc., 2013, 135, 9358.

7-Methylspiro[chromene-4,1'-cyclopentan]-2(3*H***)-one (10ac): GP was carried out on the ester 8a** (77 mg, 0.5 mmol), phenol **9c** (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control R_f (**8a**)=0.83, R_f (**10ac**)=0.70, (petroleum ether/ethyl acetate 98:2, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 98:2 as eluent) furnished the lactone **10ac** (73.2 mg, 68%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2954, 1766, 1505, 1415, 1256, 1219, 1166, 966, 815, 776 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ =7.11 (d, 1H, *J*=7.8 Hz, ArH), 6.93 (dd, 1H, *J*=7.8 and 1.0 Hz, ArH), 6.86 (d, 1H, *J*=1.0 Hz, ArH), 2.65 (s, 2H, CH₂CO), 2.32 (s, 3H, ArCH₃), 2.05–1.86 (m, 2H, 2 × CH_aH_b), 1.83 (d, 1H, *J*=10.8 Hz, CH_aH_b), 1.75–1.60 (m, 2H, 2 × CH_aH_b), 1.80 (d, 1H, *J*=6.8 Hz, CH_aH_b), 1.79 (d, 1H, *J*=10.8 Hz, CH_aH_b), 1.75–1.60 (m, 2H, 2 × CH_aH_b) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =168.7 (s, O–C=O), 150.7 (s, ArC), 138.2 (s, ArC), 128.4 (s, ArC), 125.2 (d, ArCH), 124.3 (d, ArCH), 117.5 (d, ArCH), 43.5 (s, C_q), 41.4 (t, CH₂CO), 37.8 (t, 2C, 2 × CH₂), 24.4 (t, 2C, 2 × CH₂), 20.9 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₄H₁₇O₂]⁺=[M+H]⁺: 217.1223; found 217.1215.

6-Methylspiro[chromene-4,1'-cyclopentan]-2(3*H***)-one (10ad): GP was carried out on the ester 8a** (77 mg, 0.5 mmol), phenol **9d** (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_f(8a)$ =0.83, $R_f(10ad)$ =0.70, (petroleum ether/ethyl acetate 98:2, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 98:2 as eluent) furnished the lactone **10ad** (77.0 mg, 71%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2954, 1767, 1492, 1416, 1271, 1207, 1153, 822 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ=7.07–6.97 (m, 2H, ArH), 6.93 (d, 1H, *J*=8.8 Hz, ArH), 2.65 (s, 2H, CH₂CO), 2.33 (s, 3H, ArCH₃), 2.00–1.87 (m, 2H, 2 × CH_aH_b), 1.84 (d, 1H, *J*=10.3 Hz, CH_aH_b), 1.83 (d, 1H, *J*=6.8 Hz, CH_aH_b), 1.81 (d, 1H, *J*=7.3 Hz, CH_aH_b), 1.80 (d, 1H, *J*=10.3 Hz, CH_aH_b), 1.75–1.60 (m, 2H, 2 × CH_aH_b) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ=168.6 (s, 0–C=O), 148.8 (s, ArC), 134.0 (s, ArC), 131.1 (s, ArC), 128.4 (d, ArCH), 124.9 (d, ArCH), 116.8 (d, ArCH), 43.7 (s, Cq), 41.4 (t, CH₂CO), 37.8 (t, 2C, 2 × CH₂), 24.5 (t, 2C, 2 × CH₂), 21.0 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₄H₁₇O₂]⁺=[M+H]⁺: 217.1223; found 217.1218.

Spiro[benzo[*f***]chromene-1,1'-cyclopentan]-3(2***H***)-one (10af): GP was carried out on the ester 8a** (77 mg, 0.5 mmol), phenol **9f** (216.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_f(8a)$ =0.83, $R_f(10af)$ =0.68, (petroleum ether/ethyl acetate 97:3, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 98:2 as eluent) furnished the lactone **10af** (69 mg, 64%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2924, 1766, 1511, 1466, 1257, 1119, 1046, 823 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ=7.98 (d, 1H, *J*=8.8 Hz, ArH), 7.84 (d, 1H, *J*=8.3 Hz, ArH), 7.72 (d, 1H, *J*=8.8 Hz, ArH), 7.50 (dd, 1H, *J*=8.8 and 8.3 Hz, ArH), 7.43 (dd, 1H, *J*=8.8 and 8.3 Hz, ArH), 7.19 (d, 1H, *J*=8.8 Hz, ArH), 2.78 (s, 2H, CH₂CO), 2.58–2.45 (m, 2H, CH₂), 2.20–1.90 (m, 4H, 2 × CH₂), 1.85–1.70 (m, 2H, CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ=167.5 (s, O–C=O), 149.3 (s, ArC), 131.8 (s, ArC), 130.3 (s, ArC), 117.7 (d, ArCH), 44.8 (s, C_q), 43.9 (t, CH₂CO), 39.1 (t, 2C, 2 × CH₂), 26.6 (t, 2C, 2 × CH₂) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₇H₁₆NaO₂]⁺=[M+Na]⁺: 275.1043; found 275.1039.

8-Methylspiro[chromene-4,1'-cyclohexan]-2(3*H***)-one (10bb): GP was carried out on the ester 8b** (84 mg, 0.5 mmol), phenol **9b** (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_f(\mathbf{8b})=0.85$, $R_f(\mathbf{10bb})=0.72$, (petroleum ether/ethyl acetate 98:2, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 98:2 as eluent) furnished the lactone **10bb** (71 mg, 62%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max}=2927$, 1770, 1460, 1263, 1186, 1155, 919, 749 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta=7.18$ (dd, 1H, *J*=7.8 and 1.0 Hz, ArH), 7.10 (dd, 1H, *J*=7.3 and 1.0 Hz, ArH), 7.04 (dd, 1H, *J*=7.8 and 7.3 Hz, ArH), 2.77 (s, 2H, CH₂CO), 2.30 (s, 3H, ArCH₃), 1.83–1.47 (m, 8H, 4 × CH₂), 1.35–1.22 (m, 2H, CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta=168.5$ (s, O–C=O), 149.2 (s, ArC), 132.4 (s, ArC), 129.6 (d, ArCH), 126.4 (s, ArC), 124.2 (d, ArCH), 121.5 (d, ArCH), 37.2 (t, CH₂CO), 36.2 (s, C_q), 35.0 (t, 2C, 2 × CH₂), 25.6 (t, CH₂), 21.5 (t, 2C, 2 × CH₂), 16.0 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₅H₁₉O₂]⁺=[M+H]⁺: 231.1380; found 231.1373.

7-Methylspiro[chromene-4,1'-cyclohexan]-2(3*H***)-one (10bc): GP was carried out on the ester 8b** (84 mg, 0.5 mmol), phenol **9c** (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_f(\mathbf{8b})=0.85$, $R_f(\mathbf{10bc})=0.72$, (petroleum ether/ethyl acetate 98:2, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 98:2 as eluent) furnished the lactone **10bc** (77 mg, 67%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max}=2923$, 1767, 1505, 1454, 1416, 1242, 1191, 1155, 953, 815 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta=7.26$ (d, 1H, J=7.8 Hz, ArH), 6.99 (dd, 1H, J=7.8 and 1.0 Hz, ArH), 6.90 (d, 1H, J=1.0 Hz, ArH), 2.80 (s, 2H, CH₂CO), 2.36 (s, 3H, ArCH₃), 1.87–1.45 (m, 9H, 4 × CH₂ and CH_{2a}), 1.40–1.25 (m, 1H, CH_{2b}) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta=168.6$ (s, O–C=O), 150.8 (s, ArC), 138.3 (s, ArC), 129.6 (s, ArC), 125.4 (d, ArCH), 123.9 (d, ArCH), 117.6 (d, ArCH), 37.5 (t, CH₂CO), 35.9 (s, C_q), 35.1 (t, 2C, 2 × CH₂), 25.6 (t, CH₂), 21.5 (t, 2C, 2 × CH₂), 20.9 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₅H₁₈NaO₂]⁺=[M+Na]⁺: 253.1199; found 253.1194.

6-Methylspiro[chromene-4,1'-cyclohexan]-2(3*H***)-one (10bd): GP was carried out on the ester 8b** (84 mg, 0.5 mmol), phenol **9d** (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_{f}(8b)$ =0.85, $R_{f}(10bd)$ =0.72, (petroleum ether/ethyl acetate 98:2, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 98:2 as eluent) furnished the lactone **10bd** (63 mg, 55%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2923, 1765, 1491, 1454, 1256, 1187, 1156, 914, 811 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ=7.14 (d, 1H, *J*=1.5 Hz, ArH), 7.03 (dd, 1H, *J*=8.3 and 1.5 Hz, ArH), 6.93 (d, 1H, *J*=8.3 Hz, ArH), 2.76 (s, 2H, CH₂CO), 2.33 (s, 3H, ArCH₃), 1.85–1.45 (m, 8H, 4 × CH₂), 1.35–1.15 (m, 2H, CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ=168.6 (s, O–C=O), 148.9 (s, ArC), 134.2 (s, ArC), 132.2 (s, ArC), 128.4 (d, ArCH), 124.5 (d, ArCH), 116.9 (d, ArCH), 37.3 (t, CH₂CO), 36.1 (s, C_q), 35.0 (t, 2C, 2 × CH₂), 25.6 (t, CH₂), 21.5 (t, 2C, 2 × CH₂), 21.0 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₅H₁₈NaO₂]⁺=[M+Na]⁺: 253.1199; found 253.1190.

Spiro[benzo[*f***]chromene-1,1'-cyclohexan]-3(2***H***)-one (10bf): GP was carried out on the ester 8b** (84 mg, 0.5 mmol), phenol **9f** (216.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_f(8b)$ =0.85, $R_f(10bf)$ =0.66, (petroleum ether/ethyl acetate 97:3, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 98:2 as eluent) furnished the lactone **10bf** (68.3 mg, 51%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2923, 1765, 1599, 1511, 1456, 1259, 1200, 1161, 1000, 813, 746 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ=8.42 (d, 1H, *J*=8.8 Hz, ArH), 7.83 (dd, 1H, *J*=8.3 and 1.5 Hz, ArH), 7.73 (d, 1H, *J*=8.8 Hz, ArH), 7.50 (ddd, 1H, *J*=8.8, 8.3 and 1.5 Hz, ArH), 7.42 (dd, 1H, *J*=8.8 and 8.8 Hz, ArH), 7.18 (d, 1H, *J*=8.8 Hz, ArH), 2.98 (s, 2H, CH₂CO), 2.85–2.65 (m, 2H, CH₂), 1.97–1.32 (m, 8H, 4 × CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ=167.9 (s, O–C=O), 149.3 (s, ArC), 132.1 (s, ArC), 130.9 (s, ArC), 129.8 (d, ArCH), 129.5 (d, ArCH), 125.5 (d, ArCH), 125.1 (s, ArC), 124.3 (d, ArCH), 123.4 (s, ArC), 117.9 (d, ArCH), 39.2 (s, C_q), 38.9 (t, CH₂CO), 34.1 (t, 2C, 2 × CH₂), 25.3 (t, CH₂), 21.5 (t, 2C, 2 × CH₂) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₈H₁₉O₂]⁺=[M+H]⁺: 267.1380; found 267.1373.

7-Methylspiro[chromene-4,1'-cycloheptan]-2(3*H***)-one (10cc): GP was carried out on the ester 8c** (91 mg, 0.5 mmol), phenol **9c** (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_f(8c)$ =0.83, $R_f(10cc)$ =0.72, (petroleum ether/ethyl acetate 98:2, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 98:2 as eluent) furnished the lactone **10cc** (89.1 mg, 73%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2920, 1766, 1504, 1460, 1415, 1211, 1168, 1134, 968, 814 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ =7.25 (d, 1H, *J*=7.8 Hz, ArH), 6.93 (dd, 1H, *J*=7.8 and 1.0 Hz, ArH), 6.84 (d, 1H, *J*=1.0 Hz, ArH), 2.63 (s, 2H, CH₂CO), 2.31 (s, 3H, ArCH₃), 2.00–1.85 (m, 2H, CH₂), 1.75–1.45 (m, 10H, 5 × CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =168.6 (s, O–C=O), 150.3 (s, ArC), 138.0 (s, ArC), 130.4 (s, ArC), 125.3 (d, ArCH), 124.4 (d, ArCH), 117.6 (d, ArCH), 41.5 (t, CH₂CO), 38.8 (s, C_q), 38.5 (t, 2C, 2 × CH₂), 30.3 (t, 2C, 2 × CH₂), 23.2 (t, 2C, 2 × CH₂), 20.8 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₆H₂₁O₂]⁺=[M+H]⁺: 245.1536; found 245.1525.

6-Methylspiro[chromene-4,1'-cycloheptan]-2(3*H*)-one (10cd): GP was carried out on the ester 8c (91 mg, 0.5 mmol), phenol 9d (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol)

and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_{f}(8c)=0.83$, $R_{f}(10ac)=0.72$, (petroleum ether/ethyl acetate 98:2, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 98:2 as eluent) furnished the lactone 10cd (82.9 mg, 68%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max}=2919$, 1765, 1490, 1461, 1203, 1167, 818 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta=7.15$ (d, 1H, J=1.5 Hz, ArH), 7.01 (dd, 1H, J=7.8 and 1.5 Hz, ArH), 6.91 (d, 1H, J=7.8 Hz, ArH), 2.63 (s, 2H, CH₂CO), 2.33 (s, 3H, ArCH₃), 2.02–1.85 (m, 2H, CH₂), 1.80–1.50 (m, 10H, 5 × CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta=168.7$ (s, O–C=O), 148.4 (s, ArC), 134.1 (s, ArC), 133.2 (s, ArC), 128.3 (d, ArCH), 125.1 (d, ArCH), 116.9 (d, ArCH), 41.4 (t, CH₂CO), 39.1 (s, C_q), 38.5 (t, 2C, 2 × CH₂), 30.4 (t, 2C, 2 × CH₂), 23.3 (t, 2C, 2 × CH₂), 21.0 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₆H₂₁O₂]⁺=[M+H]⁺: 245.1536; found 245.1524.

Spiro[benzo[*h***]chromene-4,1'-cycloheptan]-2(3***H***)-one (10ce): GP was carried out on the ester 8c** (91 mg, 0.5 mmol), phenol **9e** (216.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_f(8c)$ =0.83, $R_f(10aa)$ =0.68, (petroleum ether/ethyl acetate 98:2, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 98:2 as eluent) furnished the lactone **10ce** (105 mg, 75%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2922, 1770, 1506, 1457, 1257, 1220, 1167, 1095, 815 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ=8.25 (d, 1H, *J*=7.8 Hz, ArH), 7.80 (d, 1H, *J*=8.8 Hz, ArH), 7.64 (d, 1H, *J*=8.3 Hz, ArH), 7.57–7.47 (m, 3H, ArH), 2.78 (s, 2H, CH₂CO), 2.12–1.97 (m, 2H, CH₂), 1.84–1.52 (m, 10H, 5 × CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =168.5 (s, O–C=O), 145.1 (s, ArC), 133.1 (s, ArC), 128.2 (s, ArC), 127.3 (d, ArCH), 126.5 (d, ArCH), 126.4 (d, ArCH), 124.3 (d, ArCH), 123.7 (s, ArC), 122.0 (d, ArCH), 121.5 (d, ArCH), 41.3 (t, CH₂CO), 39.3 (s, C_q), 38.7 (t, 2C, 2 × CH₂), 30.5 (t, 2C, 2 × CH₂), 23.6 (t, 2C, 2 × CH₂) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₉H₂₀NaO₂]⁺=[M+Na]⁺: 303.1356; found 303.1351.

2',3'-Dihydrospiro[chromene-4,1'-inden]-2(3*H***)-one (12aa): GP was carried out on the ester 11a** (101 mg, 0.5 mmol), phenol **9a** (141.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_f(11a)=0.80$, $R_f(12aa)=0.55$, (petroleum ether/ethyl acetate 95:5, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 97:3 as eluent) furnished the lactone **12aa** (77.5 mg, 62%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max}=2923$, 1767, 1505, 1457, 1253, 1153, 1016, 815 cm⁻¹. ¹H NMR (CDCl₃, 400

MHz): δ =7.45–7.22 (m, 4H, ArH), 7.13 (dd, 1H, *J*=8.3 and 1.0 Hz, ArH), 7.10 (d, 1H, *J*=7.3 Hz, ArH), 7.03 (ddd, 1H, *J*=8.8, 8.8 and 1.0 Hz, ArH), 6.74 (dd, 1H, *J*=7.8 and 1.5 Hz, ArH), 3.10–2.95 (m, 3H, CH₂ and CH_{2a}CO), 2.69 (d, 1H, *J*=15.6 Hz, CH_{2b}CO), 2.40–2.15 (m, 2H, CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =167.7 (s, O–C=O), 151.1 (s, ArC), 144.7 (s, ArC), 144.0 (s, ArC), 130.2 (s, ArC), 128.5 (d, ArCH), 128.1 (d, ArCH), 127.3 (d, ArCH), 126.2 (d, ArCH), 125.0 (d, ArCH), 124.6 (d, ArCH), 123.6 (d, ArCH), 117.1 (d, ArCH), 49.6 (s, C_q), 41.0 (t, CH₂CO), 39.7 (t, CH₂), 29.9 (t, CH₂) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₇H₁₄NaO₂]⁺=[M+Na]⁺: 273.0886; found 273.0882.

8-Methyl-2',3'-dihydrospiro[chromene-4,1'-inden]-2(3*H***)-one (12ab): GP was carried out on the ester 11a** (101 mg, 0.5 mmol), phenol **9b** (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control R_f (**11a**)=0.80, R_f (**12aa**)=0.65, (petroleum ether/ethyl acetate 95:5, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 97:3 as eluent) furnished the lactone **12ab** (88.4 mg, 67%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2948, 1768, 1591, 1461, 1265, 1243, 1189, 1146, 921, 762 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ =7.26 (d, 1H, *J*=7.3 Hz, ArH), 7.25–7.12 (m, 2H, ArH), 7.02 (dd, 2H, *J*=8.3 and 7.3 Hz, ArH), 6.83 (dd, 1H, *J*=7.8 and 7.3 Hz, ArH), 6.47 (d, 1H, *J*=7.8 Hz, ArH), 3.00–2.85 (m, 3H, CH₂ and CH_{2a}CO), 2.76 (d, 1H, *J*=15.6 Hz, CH_{2b}CO), 2.29 (s, 3H, ArCH₃), 2.26–2.05 (m, 2H, CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =167.8 (s, O–C=O), 149.3 (s, ArC), 144.9 (s, ArC), 125.0 (d, ArCH), 124.0 (d, ArCH), 123.7 (d, ArCH), 123.6 (d, ArCH), 126.4 (s, ArC), 125.0 (d, ArCH), 124.0 (d, ArCH), 15.9 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₈H₁₆NaO₂]⁺=[M+Na]⁺: 287.1042; found 287.1043.

12ac

7-Methyl-2',3'-dihydrospiro[chromene-4,1'-inden]-2(3*H***)-one (12ac): GP was carried out on the ester 11a** (101 mg, 0.5 mmol), phenol **9c** (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control R_f (**11a**)=0.80, R_f (**12ac**)=0.66, (petroleum ether/ethyl acetate 95:5, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 97:3 as eluent) furnished the lactone **12ac** (92.4 mg, 70%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2945, 1766, 1577, 1454, 1253, 1210, 1163, 1115, 816, 760 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ =7.37–7.20 (m, 3H, ArH), 7.08 (d, 1H, *J*=7.3 Hz, ArH), 6.94 (s, 1H, ArH), 6.83 (dd, 1H, *J*=7.8 and 1.0 Hz, ArH), 6.63 (d, 1H, *J*=7.8 Hz, ArH), 3.07–2.92 (m, 3H,

CH₂ and CH_{2a}CO), 2.84 (d, 1H, *J*=15.6 Hz, CH_{2b}CO), 2.33 (s, 3H, ArCH₃), 2.32–2.12 (m, 2H, CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =167.9 (s, O–C=O), 150.9 (s, ArC), 144.9 (s, ArC), 144.0 (s, ArC), 138.8 (s, ArC), 128.0 (d, ArCH), 127.2 (d, ArCH), 127.1 (s, ArC), 125.9 (d, ArCH), 125.3 (d, ArCH), 125.0 (d, ArCH), 123.5 (d, ArCH), 117.5 (d, ArCH), 49.3 (s, C_q), 41.1 (t, CH₂CO), 39.7 (t, CH₂), 29.9 (t, CH₂), 21.0 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₈H₁₆NaO₂]⁺=[M+Na]⁺: 287.1042; found 287.1043.

6-Methyl-2',3'-dihydrospiro[chromene-4,1'-inden]-2(3*H***)-one (12ad): GP was carried out on the ester 11a** (101 mg, 0.5 mmol), phenol **9d** (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control R_f (**11a**)=0.80, R_f (**12ad**)=0.65, (petroleum ether/ethyl acetate 95:5, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 97:3 as eluent) furnished the lactone **12ad** (162.6 mg, 77%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2925, 1765, 1491, 1456, 1265, 1204, 1157, 1041, 922, 821, 761 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ =7.42–7.21 (m, 3H, ArH), 7.15–6.95 (m, 3H, ArH), 6.55 (d, 1H, *J*=1.0 Hz, ArH), 3.15–2.91 (m, 3H, CH₂ and CH_{2a}CO), 2.83 (d, 1H, *J*=15.6 Hz, CH_{2b}CO), 2.40–2.10 (m, 2H, CH₂), 2.21 (s, 3H, ArCH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =167.8 (s, O–C=O), 149.0 (s, ArC), 144.8 (s, ArC), 143.9 (s, ArC), 134.3 (s, ArC), 129.8 (s, ArC), 129.0 (d, ArCH), 128.0 (d, ArCH), 127.2 (d, ArCH), 126.3 (d, ArCH), 125.0 (d, ArCH), 123.6 (d, ArCH), 116.7 (d, ArCH), 49.6 (s, Cq), 41.1 (t, CH₂CO), 39.6 (t, CH₂), 29.9 (t, CH₂), 20.8 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₁₈H₁₆NaO₂]⁺=[M+Na]⁺: 287.1042; found 287.1047.

12af

2',3'-Dihydrospiro[benzo[f]chromene-1,1'-inden]-3(2H)-one (12af): GP was carried out on the ester **11a** (101 mg, 0.5 mmol), phenol **9f** (216.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control R_f (**11a**)=0.80, R_f (**12af**)=0.66, (petroleum ether/ethyl acetate 98:2, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 97:3 as eluent) furnished the lactone **12af** (100.5 mg, 67%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2925, 1761, 1599, 1514, 1460, 1248, 1213, 1169, 1044, 948, 731 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ =7.82 (d, 1H, *J*=8.8 Hz, ArH), 7.81 (d, 1H, *J*=7.8 Hz, ArH), 7.40 (d, 1H, *J*=7.8 Hz, ArH), 7.35–7.26 (m, 3H, ArH), 7.13 (dd, 1H, *J*=7.8 and 7.3 Hz, ArH), 7.10–7.02 (m, 2H, ArH), 6.80 (d, 1H, *J*=7.8 Hz, ArH), 3.30–3.15 (m, 2H, CH₂), 2.93 (d, 1H, *J*=15.6 Hz, CH_{2a}CO), 2.84 (dd, 1H, *J*=15.6 and 1.5 Hz, CH_{2b}CO), 2.57–2.35 (m, 2H, CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =166.9 (s, O–C=O), 150.4 (s, ArC), 148.3 (s, ArC), 141.4 (s, ArC), 132.0 (s, ArC), 130.3 (d, 2C, 2 × ArCH), 130.1 (s, ArC), 129.0 (d, ArCH), 127.8 (d,

ArCH), 127.5 (d, ArCH), 125.7 (d, ArCH), 125.5 (d, ArCH), 124.5 (d, ArCH), 123.9 (d, ArCH), 120.9 (s, ArC), 117.7 (d, ArCH), 50.9 (s, C_q), 42.2 (t, CH_2CO), 36.8 (t, CH_2), 29.9 (t, CH_2) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{21}H_{16}NaO_2]^+=[M+Na]^+$: 323.1043; found 323.1042.

6'-Isopropyl-8-methyl-2',3'-dihydrospiro[chromene-4,1'-inden]-2(3H)-one (12bb): GP was carried out on the ester 11b (122 mg, 0.5 mmol), phenol 9b (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control R_{11b}]=0.85, R_{12bb}]=0.67, (petroleum ether/ethyl acetate 97:3, UV Purification of the residue on silica gel column chromatography (petroleum detection)]. ether/ethyl acetate 100:0 to 97:3 as eluent) furnished the lactone 12bb (128.5 mg, 84%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max}=2957, 1768, 1461, 1264, 1188, 1146, 922, 829 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ=7.26 (d, 1H, J=7.3 Hz, ArH), 7.18 (d, 1H, J=7.8 Hz, ArH), 7.11 (d, 1H, J=7.3 Hz, ArH), 6.95 (s, 1H, ArH), 6.92 (dd, 1H, J=7.8 and 7.3 Hz, ArH), 6.56 (d, 1H, J=7.3 Hz, ArH), 3.03 (d, 1H, J=15.6 Hz, CH_{2a}CO), 2.98–2.84 [m, 3H, CH₂ and $CH(CH_3)_2$], 2.85 (d, 1H, J=15.6 Hz, $CH_{2b}CO$), 2.37 (s, 3H, ArCH₃), 2.34–2.12 (m, 2H, CH₂), 1.22 [d, 6H, J=6.8 Hz, CH(CH₃)₂] ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =167.9 (s, O–C=O), 149.3 (s, ArC), 148.2 (s, ArC), 144.9 (s, ArC), 141.5 (s, ArC), 130.2 (s, ArC), 130.0 (d, ArCH), 126.4 (s, ArC), 126.2 (d, ArCH), 124.7 (d, ArCH), 124.0 (d, ArCH), 123.7 (d, ArCH), 121.5 (d, ArCH), 49.7 (s, C_q), 40.9 (t, CH₂CO), 39.9 (t, CH₂), 34.0 [d, CH(CH₃)₂], 29.4 (t, CH₂), 24.1 [q, 15.9 (q, $ArCH_3$) ppm. HR-MS $2C, CH(CH_3)_2],$ (ESI^+) m/z calculated for $[C_{21}H_{22}NaO_2]^+=[M+Na]^+: 329.1512;$ found 329.1512.

6'-Isopropyl-7-methyl-2',3'-dihydrospiro[chromene-4,1'-inden]-2(3*H***)-one (12bc): GP was carried out on the ester 11b** (162 mg, 0.5 mmol), phenol **9c** (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control R_f (**11b**)=0.85, R_f (**12bc**)=0.66, (petroleum ether/ethyl acetate 97:3, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 97:3 as eluent) furnished the lactone **12bc** (125.5 mg, 82%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2958, 1766, 1491, 1456, 1253, 1213, 1163, 1036, 817 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ =7.26 (d, 1H, *J*=7.8 Hz, ArH), 7.18 (d, 1H, *J*=7.8 Hz, ArH), 6.95 (2 × s, 2H, 2 × ArH), 6.85 (d, 1H, *J*=7.8 Hz, ArH), 6.65 (d, 1H, *J*=7.8 Hz, ArH), 3.00 (d, 1H, *J*=15.6 Hz, CH_{2a}CO), 2.99–2.85 [m, 3H, CH₂ and CH(CH₃)₂], 2.85 (d, 1H, *J*=15.6 Hz, CH_{2a}CO), 2.99–2.85 [m, 3H, CH₂ and CH(CH₃)₂], 2.85 (d, 1H, *J*=15.6 Hz, CH_{2b}CO), 2.34 (s, 3H, ArCH₃), 2.30–2.12 (m, 2H, CH₂), 1.23 [d, 6H, *J*=6.8 Hz, CH(CH₃)₂] ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =167.9 (s, O–C=O), 150.9 (s, ArC), 148.2 (s, ArC), 144.9

(s, ArC), 141.3 (s, ArC), 138.6 (s, ArC), 127.2 (s, ArC), 126.2 (d, ArCH), 125.9 (d, ArCH), 125.3 (d, ArCH), 124.7 (d, ArCH), 121.3 (d, ArCH), 117.4 (d, ArCH), 49.2 (s, C_q), 41.0 (t, CH₂CO), 40.0 (t, CH₂), 34.0 [d, CH(CH₃)₂], 29.4 (t, CH₂), 24.1 [q, 2C, CH(CH₃)₂], 20.9 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{21}H_{22}NaO_2]^+=[M+Na]^+$: 329.1512; found 329.1509.

6'-Isopropyl-6-methyl-2',3'-dihydrospiro[chromene-4,1'-inden]-2(3H)-one (12bd): GP was carried out on the ester 11b (122 mg, 0.5 mmol), phenol 9d (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control R_{11b}]=0.83, R_{12bd}]=0.66, (petroleum ether/ethyl acetate 97:3, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 98:2 as eluent) furnished the lactone 12bd (133.1 mg, 87%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2958, 1768, 1491, 1266, 1206, 1160, 923, 823 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ=7.26 (d, 1H, J=7.8 Hz, ArH), 7.18 (dd, 1H, J=7.8 and 1.5 Hz, ArH), 7.05 (d, 1H, J=8.3 Hz, ArH), 7.01 (d, 1H, J=8.3 Hz, ArH), 6.95 (s, 1H, ArH), 6.57 (d, 1H, J=1.5 Hz, ArH), 2.98 (d, 1H, J=15.6 Hz, CH_{2a}CO), 2.98–2.75 [m, 3H, CH₂ and CH(CH₃)₂], 2.83 (d, 1H, J=15.6 Hz, CH_{2b}CO), 2.40–2.10 (m, 2H, CH₂), 2.21 (s, 3H, ArCH₃), 1.22 [d, 6H, J=6.8 Hz, CH(CH₃)₂] ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =167.9 (s, O–C=O), 149.0 (s, ArC), 148.2 (s, ArC), 144.9 (s, ArC), 141.4 (s, ArC), 134.2 (s, ArC), 129.9 (s, ArC), 128.9 (d, ArCH), 126.4 (d, ArCH), 126.2 (d, ArCH), 124.7 (d, ArCH), 121.5 (d, ArCH), 116.8 (d, ArCH), 49.6 (s, C_a), 41.1 (t, CH₂CO), 39.9 (t, CH₂), 34.0 [d, CH(CH₃)₂], 29.5 (t, CH₂), 24.2 [q, CH(CH₃)_{2a}], 24.1 [q, CH(CH₃)_{2b}], 20.8 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{21}H_{22}NaO_2]^+=[M+Na]^+: 329.1512;$ found 329.1512.

6'-Isopropyl-2',3'-dihydrospiro[benzo[f]chromene-1,1'-inden]-3(2H)-one (12bf): GP was carried out on the ester **11b** (122 mg, 0.5 mmol), phenol **9f** (216.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control R_f (**11b**)=0.80, R_f (**12bf**)=0.61, (petroleum ether/ethyl acetate 97:3, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 100:0 to 97:3 as eluent) furnished the lactone **12bf** (112.9 mg, 66%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): v_{max} =2957, 1773, 1513, 1460, 1248, 1212, 1166, 988, 814, 746 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ =7.82 (d, 1H, *J*=8.8 Hz, ArH), 7.80 (d, 1H, *J*=8.8 Hz, ArH), 7.35–7.26 (m, 3H, ArH), 7.16 (d, 1H, *J*=1.5 Hz, ArH), 7.07–7.00 (m, 2H, ArH), 6.63 (d, 1H, *J*=1.5 Hz, ArH), 3.25–3.05 (m, 2H, CH₂), 2.94 (d, 1H, *J*=15.6 Hz, CH_{2a}CO), 2.85

(dd, 1H, *J*=15.6 and 1.5 Hz, CH_{2b}CO), 2.72 [sept, 1H, *J*=6.8 Hz, C*H*(CH₃)₂], 2.52–2.32 (m, 2H, CH₂), 1.04 [d, 6H, *J*=6.8 Hz, CH(CH₃)₂] ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =167.1 (s, O–C=O), 150.3 (s, ArC), 148.6 (s, ArC), 148.2 (s, ArC), 138.8 (s, ArC), 132.0 (s, ArC), 130.2 (d, ArCH), 130.0 (s, ArC), 128.8 (d, ArCH), 125.9 (2 × d, 2C, 2 × ArCH), 125.5 (d, ArCH), 125.1 (d, ArCH), 124.5 (d, ArCH), 122.0 (d, ArCH), 121.2 (s, ArC), 117.6 (d, ArCH), 50.8 (s, C_q), 42.0 (t, CH₂CO), 37.2 (t, CH₂), 33.9 [d, CH(CH₃)₂], 29.5 (t, CH₂), 24.1 [q, CH(CH₃)_{2a}], 23.8 [q, CH(CH₃)_{2b}] ppm. HR-MS (ESI⁺) m/z calculated for [C₂₄H₂₂NaO₂]⁺=[M+Na]⁺: 365.1512; found 365.1508.

5',6'-Dimethoxy-7-methyl-2',3'-dihydrospiro[chromene-4,1'-inden]-2(3H)-one (12cc): GP was carried out on the ester 11c (131 mg, 0.5 mmol), phenol 9c (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control R₁(11c)=0.80, R₁(12cc)=0.55, (petroleum ether/ethyl acetate 90:10, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 98:2 to 93:7 as eluent) furnished the lactone 12cc (116.6 mg, 72%) as viscous liquid. IR (MIR-ATR, 4000-600 cm⁻¹): v_{max}=2935, 1765, 1502, 1454, 1257, 1166, 1037, 823 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ=6.92 (s, 1H, ArH), 6.84 (d, 1H, J=7.8 Hz, ArH), 6.83 (s, 1H, ArH), 6.64 (d, 1H, J=7.8 Hz, ArH), 6.55 (s, 1H, ArH), 3.89 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 2.95 (d, 1H, J=15.6 Hz, CH_{2a}CO), 2.94–2.86 (m, 2H, CH₂), 2.81 (d, 1H, J=15.6 Hz, CH_{2b}CO), 2.32 (s, 3H, ArCH₃), 2.32–2.10 (m, 2H, CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =167.9 (s, O-C=O), 150.8 (s, ArC), 149.3 (s, ArC), 148.7 (s, ArC), 138.8 (s, ArC), 136.1 (s, ArC), 135.7 (s, ArC), 127.3 (s, ArC), 125.9 (d, ArCH), 125.3 (d, ArCH), 117.5 (d, ArCH), 107.6 (d, ArCH), 106.1 (d, ArCH), 55.9 ($2 \times q$, 2C, $2 \times OCH_3$), 49.5 (s, C_a), 41.2 (t, CH₂CO), 40.1 (t, CH₂), 29.8 (t, CH₂), 20.9 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{20}H_{20}NaO_4]^+=[M+Na]^+: 347.1253;$ found 347.1254.

5',6',7'-Trimethoxy-7-methyl-2',3'-dihydrospiro[chromene-4,1'-inden]-2(3H)-one (12dc): GP was carried out on the ester **11d** (146 mg, 0.5 mmol), phenol **9c** (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_f(11d)=0.81$, $R_f(12dc)=0.58$, (petroleum ether/ethyl acetate 90:10, UV detection)]. Purification of the residue on silica gel column chromatography (petroleum ether/ethyl acetate 98:2 to 93:7 as eluent) furnished the lactone **12dc** (136.3 mg, 77%) as viscous liquid. IR (MIR-ATR, 4000–600 cm⁻¹): $v_{max}=2937$, 1767, 1583, 1464, 1413, 1338, 1226, 1165, 1115, 1062, 820 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ =6.90 (s, 1H, ArH), 6.79 (d, 1H, *J*=7.8 Hz, ArH), 6.60 (s, 1H, ArH), 6.55 (d, 1H, *J*=7.8 Hz, ArH), 3.87 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.63 (s, 3H, OCH₃), 3.57 (d, 1H, *J*=15.6 Hz, CH_{2b}CO), 2.97–2.85 (m, 2H, CH₂), 2.80 (d, 1H, *J*=15.6 Hz, CH_{2b}CO), 2.31 (s, 3H, ArCH₃), 2.29–2.12 (m, 2H, CH₂) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ =168.5 (s, O–C=O), 154.6 (s, ArC), 150.4 (s, ArC), 150.2 (s, ArC), 140.8 (s, ArC), 139.7 (s, ArC), 138.5 (s, ArC), 128.3 (s, ArC), 127.3 (s, ArC), 125.4 (d, ArCH), 125.0 (d, ArCH), 117.5 (d, ArCH), 103.1 (d, ArCH), 60.8 (q, OCH₃), 60.2 (q, OCH₃), 56.1 (q, OCH₃), 49.4 (s, C_q), 41.0 (t, CH₂CO), 40.7 (t, CH₂), 30.8 (t, CH₂), 21.0 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for [C₂₁H₂₂NaO₅]⁺=[M+Na]⁺: 377.1359; found 377.1353.

7-Methyl-3'-phenyl-2',3'-dihydrospiro[chromene-4,1'-inden]-2(3H)-one (12ec): GP was carried out on the ester 11e (139 mg, 0.5 mmol), phenol 9ac (162.0 mg, 1.5 mmol), anhydrous FeCl₃ (243 mg, 1.5 mmol) and benzene (1.5 mL). The resulting reaction mixture was stirred at rt for 12 h. [TLC control $R_{f}(11e)=0.8$, $R_{f}(12ec)=0.66$, (petroleum ether/ethyl acetate 95:5, UV Purification of the residue on silica gel column chromatography (petroleum detection)]. ether/ethyl acetate 100:0 to 97:3 as eluent) furnished the lactone 12ec (76.5 mg, 45%) as white solid. IR (MIR-ATR, 4000-600 cm⁻¹): v_{max}=2922, 1772, 1500, 1453, 1223, 1166, 1025, 820, 756 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ =7.37–7.26 (m, 4H, ArH), 7.25 (t, 1H, J=7.3 Hz, ArH), 7.20–7.12 (m, 3H, ArH), 7.04 (d, 1H, J=8.3 Hz, ArH), 6.96 (s, 1H, ArH), 6.80 (d, 1H, J=7.8 Hz, ArH), 6.36 (d, 1H, J=7.8 Hz, ArH), 4.37 (dd, 1H, J=10.3 and 7.3 Hz, CHCH₂), 3.29 (d, 1H, J=15.6 Hz, CH_{2a}CO), 2.92 (d, 1H, J=15.6 Hz, CH_{2b}CO), 2.66 (dd, 1H, J=12.7 and 7.3 Hz, CHCH_{2a}), 2.33 (s, 3H, ArCH₃), 2.27 (dd, 1H, J=12.7 and 10.3 Hz, CHCH_{2b}) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ=168.0 (s, O–C=O), 150.5 (s, ArC), 147.4 (s, ArC), 144.5 (s, ArC), 143.1 (s, ArC), 139.0 (s, ArC), 128.7 (d, 2C, 2 × ArCH), 128.5 (d, ArCH), 128.3 (d, 2C, 2 × ArCH), 127.9 (d, ArCH), 127.3 (s, ArC), 126.9 (d, ArCH), 125.6 (d, ArCH), 125.4 (d, ArCH), 125.2 (d, ArCH), 123.1 (d, ArCH), 117.7 (d, ArCH), 50.9 (t, CH₂), 48.6 (t, CHCH₂), 48.1 (s, C_a), 41.6 (t, CH₂), 21.0 (q, ArCH₃) ppm. HR-MS (ESI⁺) m/z calculated for $[C_{24}H_{20}NaO_2]^+=[M+Na]^+$: 363.1356; found 363.1358.

Chloroform-d

-77.00

--43.79 --41.30 --37.83 --24.49

-150.93

-117.13

¹H NMR (400 MHz) spectrum of **10af** in CDCl₃

¹H NMR (400 MHz) spectrum of **10bc** in CDCl₃

¹H NMR (400 MHz) spectrum of **10bf** in CDCl₃

¹H NMR (400 MHz) spectrum of **10cc** in CDCl₃

¹H NMR (400 MHz) spectrum of **10cd** in CDCl₃

¹H NMR (400 MHz) spectrum of **10ce** in CDCl₃

¹H NMR (400 MHz) spectrum of **12aa** in CDCl₃

S27

¹H NMR (400 MHz) spectrum of **12ac** in CDCl₃

¹H NMR (400 MHz) spectrum of **12ad** in CDCl₃

S30

¹H NMR (400 MHz) spectrum of **12bd** in CDCl₃

S34

¹H NMR (400 MHz) spectrum of **12ec** in CDCl₃

