1	A novel aptamer-mediated CuInS ₂ quantum dots@graphene					
2	oxide nanocomposites-based fluorescence "turn off-on"					
3	nanosensor for highly sensitive and selective detection of					
4	kanamycin					
5	Ziping Liu ^a , Chengshuo Tian ^a , Lehui Lu ^b and Xingguang Su ^{a*}					
6	^a Department of Analytical Chemistry, College of Chemistry, Jilin University,					
7	Changchun 130012, P.R. China					
8	^b State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of					
9	Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China					
10						
11						
12						
13						
14						
15	*Corresponding author					
16	<i>Tel.:</i> +86-431-85168352					
17	<i>E-mail</i> address: <u>suxg@jlu.edu.cn</u>					

2 Fig. S1 Fluorescence decay curves of the $CuInS_2 QDs$ in aqueous solution.

2 Fig. S2 The FT-IR spectra of the MPA capped CuInS₂ QDs (green curve) and Ky2-CuInS₂ QDs

1

^{3 (}red curve).

2 Fig. S3 The relationship between I_0/I and the concentration of GO (from 0 to 7.52 μ g·mL⁻¹). I and 3 I_0 were the fluorescence intensity of Ky2-CuInS₂ QDs in the presence and absence of GO,

4 respectively.

1

2 Fig. S4 The secondary structure of the Ky2 aptamer as predicted by M-Fold tool based on Zuker

3 algorithm.

Methods	Linear range (nM)	LOD (nM)	Response time	Reference
Colorimetry	1-100	1.49	3-8 min	[1]
Colorimetry	_	25	>1 h	[2]
Colorimetry	_	2000	_	[3]
Luminescence	2.0×10 ² - 1.5 ×10 ⁵	1.43×10 ²	20 min	[4]
HF-LPME-ECL	1-500	1	_	[5]
Electrochemistry	3.43-171.65	1.15	45 min	[6]
FRET	10-200	8.6	_	[7]
Fluorometry	0.3-45	0.12	12 min	This work

1 Table S1 Comparison of different methods for the determination of kanamycin

1 References

1 T. K. Sharma, R. Ramanathan, P. Weerathunge, M. Mohammadtaheri, H. K. Daima, R. Shukla

and V. Bansal, Chem. Commun., 2014, 50, 15856-15859.

- 2 K. M. Song, M. Cho, H. Jo, K. Min, S. H. Jeon, T. Kim, M. S. Han, J. K. Ku, C. Ban, *Anal. Biochem.*, 2011, **415**, 175-181.
- 3 A. A. Rowe, E. A. Miller, K. W. Plaxco, Anal. Chem., 2010, 82, 7090-7095.
- 4 K. H. Leung, H. Z. He, D. S. H. Chan, W. C. Fu, C. H. leung, D. L. Ma, Sens. Actuators B., 2013, 177, 487-492.
- 5 N. D. Zhou, J. Zhang, Y. P. Tian, Anal. Methods., 2013, 6, 1569-1574.
- 6 H. Wang, W. W. Wu, D. Y. Wei, Z. Y. Guo, S. Wang, *Journal of Electroanalytical Chemistry*, 2014, **735**, 136-141.

7 F. L. Li, Y. M. Guo, X. Sun, X. Y. Wang, Eur Food Res Technol., 2014, 239, 227-236.