Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Aging behavior of the silicone dielectric elastomers in simulated marine environment

Adrian Bele, George Stiubianu, Stelian Vlad, Codrin Tugui, Cristian-Dragos Varganici, Lavinia Matricala, Daniela Ionita, Daniel Timpu, Maria Cazacu

"Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania

Figure 1S. Comparative FTIR spectra of the sample M1BT10, original and aging by protocols ASW1/2 + UV and ASW.

Figure 2S. Comparative FTIR spectra of the sample M2BT10, original and aging by protocols ASW1/2 + UV and ASW.

Figure 3S. Comparative FTIR spectra of the sample M2BT15, original and aging by protocols ASW1/2 + UV and ASW.

Figure 4S. FTIR spectra of the surfactant PLURONIC L-31, recorded after different UV irradiation (366 nm) times.

Table 1S. The main values of the diffractograms for the sample M2BT10 in the three stages as compared with those
for barium titanate.

BaO₃Ti		Sample M2BT10							
		No aged		ASW1	/2 + UV	ASW			
Angle,	d value,	Angle,	d value,	Angle,	d value,	Angle,	d value,		
2-Theta °	Angstrom	2-Theta °	Angstrom	2-Theta °	Angstrom	2-Theta °	Angstrom		
22.23	3.996	22.28	3.988	22.33	3.979	22.25	3.992		
31.62	2.827	31.63	2.827	31.70	2.820	31.62	2.827		
38.96	2.310	38.99	2.308	39.05	2.305	38.97	2.309		
45.29	2.001	45.32	2.000	45.42	1.995	45.33	1.999		
50.98	1.790	51.11	1.786	51.03	1.788	50.99	1.789		
56.24	1.634	56.28	1.633	56.33	1.632	56.27	1.634		
65.89	1.416	65.97	1.415	66.03	1.414	65.96	1.415		

DSC /(mW/mg)

Sample M2BT10

Sample M2BT15

Fig. 5S. DSC curves for all samples in different aging stages.

Aging	Sample	T _{g1}	T _{g2}	T _{t1}	ΔHt_1	T _{t2}	∆Ht₂	T _{cr}	ΔH _{cr}	Xc
conditions	code	(°C)	(°C)	(°C)	(J/g)	(°C)	(J/g)	(°C)	(J/g)	(%)
	M3BT10	-120.2	-119.9	-41.5	22.73	-41.3	22.54	-69.6	-21.86	36.77
	M3BT15	-123	-122.1	-40.6	24.08	-40.7	24.14	-68.9	-21.84	39.38
No aging	M2BT10	-122.7	-122.6	-40.3	20.91	-40.2	20.94	-70.9	-41.88	34.16
	M2BT15	-120.7	-120	-40.6	19.28	-40.4	19.06	-73.9	-17.5	31.09
	M1BT10	-120.2	-121	-49	16.13	-49	15.98	-87.6	-14.8	26.07
	M1BT15	-121.7	-121	-44.8	16.71	-45.1	16.71	-78.4	-16.34	27.26
	M3BT10	-121.7	-121.2	-40.2	23.03	-39	22.91	-70.4	-21.74	37.4
	M3BT15	-122.7	-122.5	-37.4	24.36	-36.9	24.68	-71.09	-21.81	40.26
ASW1/2+UV	M2BT10	-122.2	-122.1	-38.5	21.66	-38.7	21.9	-69.8	-20.06	35.73
	M2BT15	-123	-123.1	-41.5	19.94	-42	20.22	-70.3	-18.97	32.99
	M1BT10	-120.1	-120.2	-45.1	15.39	-45	15.42	-81.3	-15.3	25.16
	M1BT15	-121.2	-121.8	-45.5	15.86	-45.3	15.83	-77.2	-15.83	25.82
	M3BT10	-122.6	-122.6	-41.3	23.13	-40.9	23.34	-68.8	-22.4	38.07
	M3BT15	-123.1	-123.4	-40.9	24.24	-39.7	24.37	-69.2	-22.3	39.76
ASW	M2BT10	-122.5	-122.9	-42	20.36	-41.9	20.15	-71.1	-19.1	32.87
	M2BT15	-122	-122	-41.4	17.59	-41.5	17.73	-72.5	-17.19	28.92
	M1BT10	-117.8	-118.5	-47.6	12.87	-47.7	12.62	-83.7	-11.89	20.59
	M1BT15	-119.4	-119	-51.7	10.37	-51.9	10.32	-92	-9.59	16.84

Table 25. Thermal characteristics extracted from DSC data.

 T_{g1} – glass transition temperature corresponding to the first heating run;

 $T_{g2}\mbox{--} glass transition temperature corresponding to the second heating run;$

 T_{t1} – melting temperature corresponding to the first heating run (h1);

 T_{t2} – melting temperature corresponding to the second heating run (h2);

 ΔHt_1 – enthalpy of the melting profile corresponding to the first heating run;

 ΔHt_2 – enthalpy of the melting profile corresponding to the second heating run;

 $T_{cr}-\mbox{crystallization}$ temperature corresponding to the cooling run (c);

 ΔH_{cr} – enthalpy of the crystallization profile;

 χ_c – degree of cristalnity.

	Characteristic	Sample						
Ageing Type	Characteristic	M3BT10	M3BT15	M2BT10	M2BT15	M1BT10	M1BT15	
	σ, MPa	0.23	0.2	0.29	0.24	0.39	0.41	
	ε, %	1150	374	594	455	113	151	
	E, MPa	0.10	0.05	0.25	0.08	0.66	0.36	
No ageing	ε' (at 10 Hz)	4.95	5.89	4.41	5.07	3.78	5.03	
	ε'' (at 10 Hz)	0.036	0.017	0.068	0.075	0.160	0.038	
	UTT, ^a KJ/m ³	17.46	5.35	9.88	6.79	2.78	3.90	
	σ, MPa	0.18	0.19	0.23	0.36	0.69	0.52	
	ε, %	240	252	234	272	78	123	
ASW1/2 + UV	E, MPa	0.23	0.22	0.25	0.31	0.9	0.58	
ageing	ε' (at 10 Hz)	3.57	4.23	3.72	3.9	3.57	3.76	
	ε'' (at 10 Hz)	0.017	0.016	0.1	0.016	0.042	0.13	
	UTT, ^a KJ/m ³	3.06	3.26	3.51	6.11	2.98	3.59	
	σ, MPa	0.29	0.31	0.55	0.6	0.45	0.45	
	ε, %	806	763	435	422	76	100	
ASW	E, MPa	0.025	0.16	0.40	0.40	0.60	0.72	
ageing	ε' (at 10 Hz)	10.55	5.61	13.07	4.87	3.26	4.37	
	ε'' (at 10 Hz)	51.92	18.063	147.23	4.41	0.26	0.12	
	UTT, ^a KJ/m ³	15.53	15.21	13.89	15.01	1.70	2.82	

Table 3S. Relevant mechanical and dielectric characteristics for tested samples

^a Ultimate tensile toughness

	Original samples		ASW1/2 +	UV ageing	ASW ageing		
	Strain, %	E, MPa	Strain, %	E, MPa	Strain, %	E, MPa	
M3BT10	24.0	0.178	23.1	0.244	19.4	0.232	
M3BT15	25.0	0.248	22.4	0.242	19.0	0.200	
M2BT10	15.0	0.247	22.8	0.266	22.5	0.357	
M2BT15	23.5	0.165	23.4	0.358	22.7	0.378	
M1BT10	12.3	0.658	23.6	1.070	26.5	0.566	
M1BT15	19.7	0.491	25.1	0.626	26.0	0.673	

Table 4S. Permanent set values for initial samples and after ageing

Table 5S. Absorbed energy (kJ/m³) by the original samples at 100% elongation for 5 stress-strain cycles

Cycles	M3BT10	M3BT15	M2BT10	M2BT15	M1BT10	M1BT15
1	0.45	0.85	0.71	0.74	2.06	2.18
2	0.43	0.73	0.67	0.66	1.89	1.95
3	0.43	0.71	0.66	0.64	1.88	1.92
4	0.42	0.70	0.65	0.64	1.88	1.91
5	0.42	0.70	0.65	0.63	1.87	1.90

Fig. 6S. Conductivity curves for the samples: left - no ageing; middle - after ageing according to ASW1/2 + UV; right - after ageing according to ASW.