Facile synthesis of porous Fe₂TiO₅ microparticulates serving as anode material with enhanced electrochemical performances Shimei Guo, a,b Shenyu Wang, a Nannan Wu, a Jiurong Liu, a,* Yuxing Ni, c and Wei Liuc,* - ^a Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Shandong 250061, China - ^b College of Physics and Electronic Engineering, Qujing Normal University, Yunnan 655011, China - ^c State Key Laboratory of Crystal Materials, Shandong University, Shandong 250100, China Fig. S1 SEM image of TiO_2 microspheres (a) and Fe_2O_3 nanoparticles (b). **Table S1.** Rate performances of TiO₂ microspheres, Fe₂O₃ nanoparticles and porous Fe₂TiO₅ microparticulates at different current densities (mA g⁻¹). | Materials | Capacities of the 10th cycle at various densities (mA g ⁻¹) | | | | | | | |----------------------------------|---|-----|-----|-----|------|----------------|--| | | 100 | 200 | 400 | 800 | 1600 | 100 (returned) | | | TiO ₂ | 99 | 76 | 59 | 42 | 31 | 95 | | | Fe_2O_3 | 246 | 124 | 74 | 35 | 10 | 126 | | | Fe ₂ TiO ₅ | 364 | 286 | 239 | 173 | 118 | 356 | | **Table S2.** R_e , R_{sf} and R_{ct} values of TiO_2 microspheres, Fe_2O_3 nanoparticles and porous Fe_2TiO_5 microparticulates after 100 cycles at a current density of 100 mA g^{-1} . | Sample | $R_{e}\left(\Omega\right)$ | $R_{\mathrm{sf}}(\Omega)$ | $R_{ct}(\Omega)$ | $R_e + R_{sf} + R_{ct}(\Omega)$ | |----------------------------------|----------------------------|---------------------------|------------------|---------------------------------| | TiO ₂ | 7.91 | 74.67 | 238.92 | 321.5 | | Fe_2O_3 | 6.35 | 95.59 | 187.6 | 289.54 | | Fe ₂ TiO ₅ | 6.95 | 21.46 | 113.49 | 141.9 |