Supporting Information

Improving photoelectrochemical performance of highly-ordered TiO₂ nanotube arrays with cosensitization of PbS and CdS quantum dots

Xiaojiao Zhang ^{ab}, Min Zeng ^a, Jiawei Zhang ^c, Aimin Song ^c, Shiwei Lin ^{ac}*

^a Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China
^b School of Applied Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
^c School of Electrical and Electronic Engineering, University of Manchester,

Sackville Street Building, Manchester M13 9PL, UK

* Corresponding author. Tel.: +86 898 66290185; fax: +86 898 66290185. E-mail address: linsw@hainu.edu.cn (S. Lin).

Fig. S1 XRD patterns of the untreated TNTAs, TNTAs/PbS(5), TNTAs/CdS(5), TNTAs/CdS(5)/PbS(2)/CdS(5) and TNTAs/CdS(5)/PbS(2).

Fig. S2 TEM images of the pure TNTAs.

Fig. S3 Equivalent circuit used to simulate the Nyquist plots measured by EIS in the Randles-Ershler model. R_s is the electrolyte resistance, *CPE* is the capacitance phase element for the semiconductor/electrolyte interface, and R_{ct} is the charge transfer resistance across the interface.

Samples	$R_{ m s}/\Omega$	$R_{ m ct}/\Omega$	CPE / F
TNTAs/PbS(5)	64.8	452	1.2×10 ⁻⁴
TNTAs/PbS(5)/CdS(5)	68.9	634	1.5×10 ⁻⁴
TNTAs/PbS(5)/CdS(14	39.0	3580	1.8×10 ⁻⁴
)			
TNTAs/CdS(14)	81.7	38500	1.7×10 ⁻⁴

Table S1 EIS fitting results within the intermediate frequency (1~1kHz).