1	Effects of nitrogen-dopants on Ru-supported catalysts for
2	acetylene hydrochlorination
3	Lijun Hou, ^a Jinli Zhang, ^a Yanfeng Pu ^{*b} and Wei Li ^{*a}
4	(a School of Chemical Engineering and Technology, Tianjin University,
5	Tianjin 300072, P. R. China. ; ^b State Key Laboratory of Coal Conversation,
6	Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001,
7	P. R. China.)
8	Supplementary Information
9	Contents:
10	Fig. S1. N_2 adsorption-desorption isotherms (a) and the corresponding pore
11	size distribution (b) of the supports.
12	Fig. S2. N 1s XPS spectra of the fresh catalysts: (a) SAC-N600; (b) SAC-
13	N700; (c) SAC-N800.
14	Fig. S3. N 1s XPS spectra of the fresh catalysts: (a) Ru/SAC-N600; (b)
15	Ru/SAC-N700; (c) Ru/SAC-N800.
16	Fig. S4. Ru 3p3 XPS spectra of the fresh catalysts: (a) Ru/SAC; (b)
17	Ru/SAC-N600; (c) Ru/SAC-N700; (d) Ru/SAC-N800.
18	Fig. S5. Ru 3p3 XPS spectra of the used catalysts: (a) Ru/SAC; (b) Ru/SAC-
19	N600; (c) Ru/SAC-N700; (d) Ru/SAC-N800.

1 Fig. S6. TG curves of the fresh and used Ru-support catalysts. 2 Table S1. Nitrogen content and binding energies of nitrogen species in the 3 catalysts 4 Table S2. Elemental composition of the bulky carbon samples determined 5 by elemental analysis

3 Fig. S1. N_2 adsorption-desorption isotherms (a) and the corresponding pore

	4	size	distribution	(b)	of	the	supports.
--	---	------	--------------	-----	----	-----	-----------

1

2 Fig. S2. N 1s XPS spectra of the fresh catalysts: (a) SAC-N600; (b) SAC-

3 N700; (c) SAC-N800.

2 Fig. S3. N 1s XPS spectra of the fresh catalysts: (a) Ru/SAC-N600; (b)
3 Ru/SAC-N700; (c) Ru/SAC-N800.

2 Fig. S4. Ru 3p3 XPS spectra of the fresh catalysts: (a) Ru/SAC; (b)

3 Ru/SAC-N600; (c) Ru/SAC-N700; (d) Ru/SAC-N800.

2 Fig. S5. Ru 3p3 XPS spectra of the used catalysts: (a) Ru/SAC; (b)

3 Ru/SAC-N600; (c) Ru/SAC-N700; (d) Ru/SAC-N800.

- 1 Table S1. Nitrogen content and binding energies of nitrogen species in
- 2 the catalysts

N _{PYR}	N _Q N-X
6 (400.0) 22.8 (40	01.4) 7.8 (402.7)
7 (400.1) 32.0 (40	01.1) 3.5 (402.5)
8 (400.0) 6.7 (40	01.4) 12.9 (402.3)
	N _{PYR} 6 (400.0) 22.8 (40 7 (400.1) 32.0 (40 8 (400.0) 6.7 (40

3

4 Table S2. Elemental compositions of the bulky carbon samples

Samples	Bulk content (%)					
	С	Ν	0			
SAC	97.17	0.11	2.72			
SAC-N600	96.98	1.42	1.60			
SAC-N700	95.78	2.10	2.12			
SAC-N800	95.87	1.98	2.15			

5 determined by elemental analysis

6