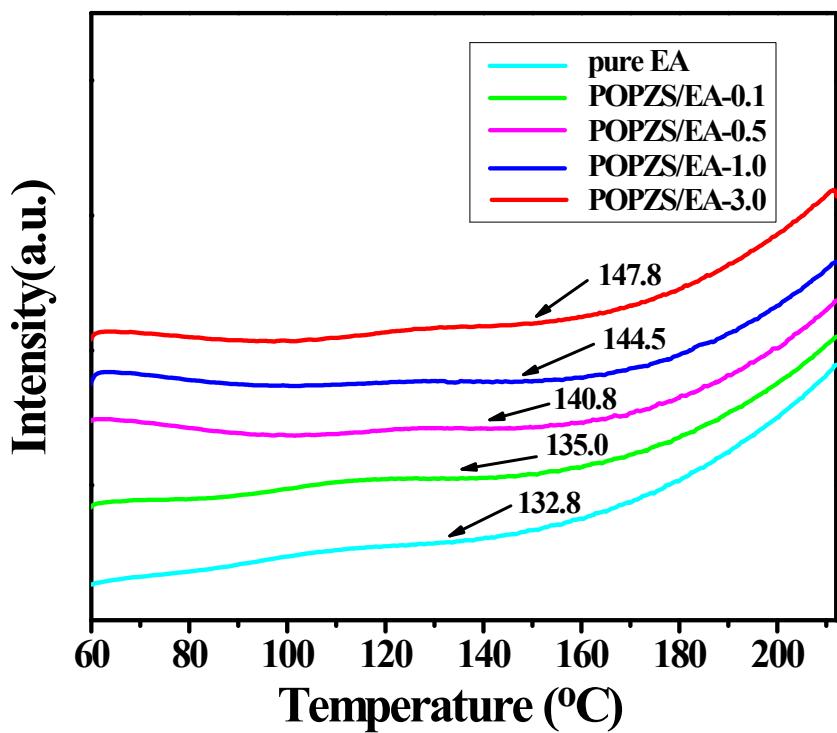


Electronic Supplementary Material (ESI) for RSC Advances.
POSS-Functionalized Polyphosphazene Nanotube: Preparation and
Effective Reinforcement on UV-Curable Epoxy Acrylate
Nanocomposite Coatings

Siyu Li^b, Shuilai Qiu^a, Bin Yu^{a, c}, Weiyi Xing^{a,*}, Yuan Hu^{a,c*}

^a *State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China*

^b *Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China*


^c *Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren'ai Road, Suzhou, Jiangsu 215123, P.R. China*

Thermal properties of EA and POPZS/EA nanocomposites

DSC was used to investigate the thermal property of POPZS/EA nanocomposites.

Glass transition temperature (T_g) is determined from DSC curves, as shown in Fig. S1.

It is observed that the T_g s of EA nanocomposites are 135.0°C, 140.8°C, 144.5°C, 147.8°C with increasing the loading of POPZS nanotubes from 0.1wt% to 3.0%, which is consistent with the DMA results. Compared to the pure EA, the maximal improvement in T_g is approximately 15.0 °C. Since the POPZS is covalently introduced into the EA matrix strengthening their interfacial interactions and has high stiffness reducing the flexibility of materials, the T_g values are remarkably enhanced.

Figure S1. DSC curves of EA and POPZS/EA nanocomposites.