- 1 Electron Competitive Migration Regulating for Dual Maxima of Water Photolysis
- 2 Xianqun Chen,^{a,b} Liping Li,^a Yangsen Xu,^a Yuelan Zhang,^a Guangshe Li^{a*}
- 3 * Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the
- 4 Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. Fax: (+) 86-591-63179426;
- 5 Tel: (+) 86-591-63179426; E-mail: guangshe@fjirsm.ac.cn
- 6 ^b College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, P. R. China

7

Supporting information

8 Raman shift:

9

11 The Raman signal at 486 cm⁻¹ is ascribed to E_g mode, and the low symmetric peak of 574 cm⁻¹ to

12 the oxygen vacancy and local disorder in SnO_2 lattice, as proposed elsewhere¹.

13 XRD patterns:

14

15

Figure S2. XRD patterns of the as-prepared Sn-Hx hybrids.

- The overlapped peaks in the range of 15-30 degrees could be distinguished to be associated with
 (110) diffraction of SnO₂ and (002) peak of g-C₃N₄, and the diffraction intensity from SnO₂-AD
- 3 became increased with increasing the mass ratio of SnO_2 -AD.
- 4 Tg & DTA:

Figure S3. TG curves of the selected hybrids and DTA curve of hybrid Sn-H30.

7 The selected samples have weight losses of about 95%, 70% and 40%, respectively, and two 8 exothermic peaks of Sn-H30 at 530 °C and 640 °C are caused by thermal decomposition of $g-C_3N_4$.

10

11 Figure S4. FT-IR transmittance spectra of the as-prepared SnO_2 -AD, g- C_3N_4 and selected Sn-Hx hybrids.

For the as-prepared SnO₂-AD, a wide and strong absorption signal appeared at 614 cm⁻¹, which is due to the anti-symmetric Sn-O-Sn stretching mode of SnO₂ nanoparticles¹. The peak at 810 cm⁻¹ was resulted from the triazine ring, the peaks at 1246 and 1320 cm⁻¹ correspond to C-N stretching, and the peaks at 1413, 1460, 1563, and 1641 cm⁻¹ could be assigned to the typical stretching

vibration modes of heptazine-derived repeating units². Typically, the peak intensity of 614 cm⁻¹
 due to Sn-O-Sn stretching vibrations became stronger as the SnO₂ mass ratio increase from 10%
 to 70%.

4 Morphology of g-C3N4:

5 6

Figure S5. TEM (A) and HR-TEM (B) images for as-prepared g-C₃N_{4.}

7 Survey XPS spectra:

9

Figure S6. Survey XPS spectra of as-prepared SnO₂-AD and Sn-H40 hybrid.

Compare with the survey XPS data for SnO₂-AD, Sn-H40 exhibits two additional photoelectron
peaks at 287.2 eV and 398.8 eV, respectively, which could be assigned to C1s and N1s from gC₃N₄.

13 UV-vis spectra:

1

2

Figure S7. UV-vis absorbance spectra of SnO₂, g-C₃N₄ and SnO₂/g-C₃N₄ hybrids.

3 Photocatalytic test for water splitting:

4

5 Figure S8. Hydrogen yield from water splitting under visible light (420nm) irradiation for 5 hours of 100mg of as-

6 prepared defective SnO_2 under ultraviolet (λ >260 nm) and visible (λ >420 nm) light irradiation with 300W Xe lamp.

7 The activity of as-prepared SnO₂-AD in photo-splitting water is really poor to yield hydrogen of 3

- 8 µmol and 0 µmol after irradiation for 5h under the 260 nm and 420 nm light, which approved it
- 9 had appropriate energy band position as well as narrower gap (3.5 eV) than references value.

10

- 1 Figure S9. Comparison of the hydrogen evolution for SnO₂-SH/g-C₃N₄ hybrid in 40% SnO₂-SH mass ratio and
- 2 Sn-H40 irradiated by 420 nm light within 5 hours.

To confirm the negative role of oxygen vacancies in SnO₂/g-C₃N₄ hybrids, the hybrid in 40% mass ratio of SnO₂-SH was also tested under the similar experimental condition. Sn-H40 showed a hydrogen yield of 14.4 µmol in 5 h. Comparatively, the hydrogen evolution of 40% SnO₂-SH/g-C₃N₄ hybrid is just 6.1 µmol. Therefore, oxygen vacancies in SnO₂ act as the electron trap centres and weaken the phtocatalytic activity of hybrids in water splitting. Consequently, there should be a competitive migration between conduction band and oxygen vacancy.

9 PL spectra of samples:

10

13

11 Figure S10. (A) Solid state PL spectra under 390 nm excitation wavelength, and (B) aqueous environment PL

12 spectra of g-C₃N₄, SnO₂/g-C₃N₄ hybrids with same concentration under 390 nm excitation wavelength.

Figure S11. PL intensity spectra in triethanolamine solution environment of 1wt% Pt deposited $g-C_3N_4$, Sn-Hx; and (B) PL integral areas of 1wt% Pt deposited Sn-Hx under 390 nm excitation wavelength.

After depositing 1wt% Pt for all samples, the variation trend of PL spectra integral areas in
 triethanolamine solution environment is the same as that of PL properties in pure water, which
 confirms that 1wt% deposition of Pt didn't change the PL properties trend in a very short period of
 time.

6 Figure S12. Typical PL decays measured at 464 nm emission wavelengths corresponding to g-C₃N₄ and Sn-H5 in

7 solid PL state.

5

9

8 Base on average PL lifetime formula given from reference³:

$$\tau_{avg} = \frac{\sum_{n}^{n} \alpha_{n} \tau_{n}^{2}}{\sum_{n}^{n} \alpha_{n} \tau_{n}}$$

- 10 The average PL life for g-C₃N₄ and SH-5 is 6.8 ns and 6.4 ns, respectively. The shortened PL life
- 11 indicates SnO₂-AD separated apart of free photo-generated charges from g-C₃N₄, and decreased
- 12 the intrinsic radiative recombination of charges in $g-C_3N_4$.
- 13 Table S1. Photocatalytic activity of SnO_2 -AD/g- C_3N_4 hybrids under visible light irradiation (λ >420 nm).

SnO ₂ mass ratio	Integral area	Hydrogen yield	Hydrogen generation rate	P-H conversion efficiency
(%)	(a.u.)	(µmol)	$(\mu mol {\cdot} h^{\text{-}1} {\cdot} g^{\text{-}1})$	(µmol·g ⁻¹ _{C3N4})
0	33927	8.37	27.90	8.37
5	54511	13.45	44.82	14.15

10	66059	16.29	54.32	18.11
15	55427	13.67	45.57	16.08
20	50249	12.39	41.32	15.49
25%	43780	10.80	36.00	14.40
30	31358	7.74	25.78	11.05
35	40449	9.98	33.26	15.35
40	54230	13.38	44.59	22.29
45	52148	12.86	42.88	23.39
50	25258	6.23	20.77	12.46
60	13338	3.29	10.97	8.23
70	12885	3.18	10.59	10.59
100	0	0	0	0

1

2 The hydrogen yields were calculated by the following formula base on gas chromatograph

3 emendation:

$$x = \frac{S}{4054}$$

5 Where x represent the hydrogen yield and S represent integral area of gas chromatograph. Photon-

6 Hydrogen (P-H) conversion efficiency was calculated by equation:

 $y = \frac{x}{p}$

8 Where y represent P-H conversion efficiency, x represent hydrogen yield, and p represent the mass

9 ratio of $g-C_3N_4$ in $SnO_2/g-C_3N_4$ Hybrids.

10 **Reference**

- 1 1 A. Das, V. Bonu, A. K. Prasad, D. Panda, S. Dhara and A. K. Tyagi, J Mater Chem C, 2014, 2,
- 2 164-171.
- 3 2 F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu and S. C. Lee, J Mater Chem, 2011, 21, 15171-15174.
- 4 3 S. Kumar, M. Jones, S. S. Lo and G. D. Scholes, *Small*, 2007, 3, 1633-1639.