Electronic Supplementary Information

Solution-Processed Organic Light-Emitting Diodes with Enhanced Efficiency by Using Non-Conjugated Polymer Doped Small-Molecule Hole-Blocking Layer

Yuan Tian, † Jinghong Peng, † Xinjun Xu, * and Lidong Li*

School of Materials Science and Engineering, University of Science and Technology

Beijing, Beijing 100083, P. R. China.

[†]These authors contributed equally to this work.

E-mail: xuxj@mater.ustb.edu.cn (X.X.); lidong@mater.ustb.edu.cn (L.L.).

Materials. Poly(N-vinylcarbazole) (PVK) and PEDOT:PSS (CLEVIOS PVP Al 4083) were purchased from Sigma Aldrich and H. C. Starck Clevios GmbH, respectively, and were used as received. 1,3-Bis[(4-tert-butylphenyl)-1,3,4-oxadiazolyl]phenylene (OXD-7) was purchased from Wuhan Zossin technology Co., Ltd. 2,7-Bis(diphenylphosphoryl)-9,9'-spirobifluorene (SPPO13)^{S1} and polyethylene glycol with different molecular weights (PEG 2000, PEG 6000, PEG 10000, and PEG 20000) were purchased from Luminescence Technology Corp. and Alfa Aesar, respectively. Iridium (III) bis(4, 6-difluorophenylpyridinato-N, C2') picolinate (FIrpic) was synthesized in our lab according to the reported procedure.^{S2} All the solvents were purchased from Beijing Chemical Works and were distilled before use.

Fabrication of OLEDs. The OLEDs were fabricated on patterned ITO-coated glass substrates with a sheet resistance of 10 Ω /square purchased from CSG Holding Co., Ltd. The ITO-coated glass substrates were cleaned by detergent, then sequentially ultra-sonicated in distilled water, acetone and alcohol. Subsequently, a layer of 40 nm thick PEDOT:PSS was spin-coated onto the precleaned and ultraviolet-ozone (UVO) treated ITO substrates, then annealed at 120 °C for 30 min in a nitrogen filled glove box (H₂O < 0.1 ppm, O₂< 0.1 ppm). After that, a chlorobenzene solution containing the mixture of PVK: OXD-7: FIrpic in a total concentration of 15 mg/mL was spin-coated onto the PEDOT:PSS layer and baked at 120 °C for 10 min to form a 80 nm thick emitting material layer (EML). The HBL material composed of SPPO13 and PEG 6000 was dissolved in isopropanol and was spin-coated on the emissive layer to form a 70 nm-thick thin film. Finally, Al (100 nm)

was deposited onto the ETL as a cathode by thermal evaporation under a vacuum of 3 $\times 10^{-6}$ Torr. The chemical structures of the relevant materials and device structure are shown in Figure S1.

Figure S1. The chemical structures of the relevant materials and the OLED device structure.

Measurements. Film thickness was measured by an Ambios Technology XP-2 profilometer. The current density–luminance–voltage (J-L-V) and luminous efficiency–current density $(\eta-J)$ were measured using a Keithley 2612B source-measurement unit and a silicon photodiode that is calibrated by a PR-655 SpectraScan spectrophotometer. Electroluminescent spectra were recorded on a Maya 2000Pro

spectrophotometer (Ocean Optics). The atomic force microscopy (AFM) images were obtained from a Veeco DI Dimension V atomic force microscope operating in the tapping mode. For the photovoltaic (V_{oc}) measurement, the OLEDs were exposed to light with intensity of 95 mW/cm² from a simulated light source (Oriel Sol2A) and measured using a Keithley 2612B source meter. Devices' surface temperatures were measured using a K-type thermocouple and a Keithley 2000 digital multimeter with a Model 2001-TCSCAN thermocouple card.

Figure S2. TGA thermogram of PEG 2000, PEG 6000, PEG 10000 and PEG 20000 at a heating rate of 10 °C min⁻¹. The inset shows DSC curve of PEG 2000, PEG 6000, PEG 10000 and PEG 20000 at a heating rate of 20 °C min⁻¹.

Figure S3. AFM images (10 μ m × 10 μ m scale) of the surface morphology of the 30% PEG doped SPPO13 thin films without annealing (a) and with annealing temperature of 45 °C (b), 60 °C (c), 80°C (d) and 100 °C (e).

Figure S4. η -J characteristics of devices based on the 30% PEG-doped HBL with different molecular weight of PEG (PEG 2000, PEG 6000, PEG 10000, and PEG 20000). (Since these devices were fabricated in a different batch from the devices described in the main text, there is a little difference on the measured value of

luminous efficiency.)

Figure S5. Photovoltaic characteristics of devices based on the 30% PEG-doped HBL with different molecular weight of PEG (PEG 2000, PEG 6000, PEG 10000, and PEG 20000).

References:

- S1. S. E. Jang, C. W. Joo and J. Y. Lee, Thin Solid Films, 2010, 519, 906-910.
- S2. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M.
- Bortz, B. Mui, R. Bau and M. E. Thompson, Inorg. Chem., 2001, 40, 1704-1711.