β-Phosphorus Hyperfine Coupling Constant in Nitroxides: 4. Solvent Effect Gérard Audran,^{*a} Lionel Bosco,^a Paul Brémond,^{a*} Teddy Butscher,^a Jean-Michel Franconi,^b Kuanysh Kabitaev,^a Sylvain R. A. Marque,^{a,c*} Philippe Mellet,^{b,d} Elodie Parzy,^b Maurice Santelli,^a Eric Thiaudière^b and Stéphane Viel^{a,e}

^a Aix-Marseille Université, CNRS-UMR 7273, ICR, case 541, Avenue Escadrille Normandie-

Niemen, 13397 Marseille Cedex 20 France.

^b CRMSB, CNRS-UMR-5536, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat,

Case 93, 33076 Bordeaux cedex, France

^c N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia.

^d INSERM, 146 rue Léo Saignat, Case 93, 33076 Bordeaux cedex, France

e Institut Universitiareb de France, 75000 Paris, France

* to whom the correspondence should be sent: <u>paul.brémond@univ-amu.fr</u>, <u>sylvain.marque@univ-amu.fr</u>, <u>g.audran@univ-amu.fr</u>

	Solvent ^a	$E_{\mathrm{T}}^{\mathrm{Nb}}$	c^{b}	$\pi^{*b,d}$	$\alpha^{b,d}$	$V_X{}^d$	$V_M{}^c$	$\epsilon_r^{b,c}$	μ ^{b,c}	п	δ	В
1	<i>n</i> -pentane	0.009	205	-0.15	0.00	81.3	114.52	1.84	0.00	1.3575	0	0
2	<i>n</i> -hexane	0.009	225	-0.11	0.00	95.4	130.50	1.88	0.09	1.3749	0	0
3	CHex	0.006	285	0.00	0.00	84.5	108.10	2.02	0.00	1.4262	0	0°
4	<i>n</i> -octane	0.012	231	0.01	0.00	123.6	162.56	1.95	0.00	1.3876 ^e	0	0
5	benzene	0.111	353	0.55	0.00	71.6	88.85	2.27	0.00	1.5011	1	48
6	toluene	0.099	337	0.49	0.00	85.7	106.24	2.38	0.31	1.4969	1	58
7	<i>t</i> -BuPh	0.099	337	0.41	0.00	113.9	154.80	2.37	0.36	1.4927	1	60
8	PhBr	0.182	408	0.77	0.00	89.1	105.03	2.65	1.56	1.5568	1	40
9	Pyridine	0.302	466	0.87	0.00	67.5	80.55	12.91	2.37	1.5102	1	472
10	AcPh	0.306	456	0.68	0.00	101.4	116.30	17.39	2.95	1.5342	1	202
11	t-BuPh/CH ₂ Cl ₂										1	
12	CH ₂ Cl ₂	0.309	414	0.73	0.13	49.4	64.00	8.93	1.14	1.4242	0.5	23
13	DCE	0.327	400	0.73	0.00	63.5	80.16	10.36	1.83	1.4448	0.5	40
14	CHCl ₃	0.259	362	0.69	0.20	61.7	80.50	4.89	1.15	1.4459	0.5	14
15	CCl ₄	0.052	310	0.21	0.00	73.9	96.49	2.24	0.00	1.4602	0.5	0
16	DME	0.231	307	0.53	0.00	55.2	104.4	3.5	1.71	1.3796	0	238
17	Et ₂ O	0.117	251	0.24	0.00	73.1	103.80	4.20	1.15	1.3524	0	271

Table 1S1. HBD parameter α , intrinsic volume V_X, molar volume V_M, normalized Reichardt solvent polarity parameter E_T^N , cohesive pressure *c*, polarity/polarizability π^* , relative dielectric constant ε_r and dipolar moment μ^{1-2}

2

18	<i>i</i> -Pr ₂ O	0.105	243.5	0.19	0.00	101.3	141.14	3.88	1.22	1.3689	0	293
19	<i>n</i> -Bu ₂ O	0.071	251	0.18	0.00	129.5	169.30	3.08	1.17	1.3992	0	33
20	t-BuOMe	0.124								1.3690	0	
21	14D	0.164	388	0.49	0.00	68.1	85.22	2.21	0.45	1.424	0	236
22	THF	0.207	359	0.55	0.00	62.2	81.14	7.58	1.75	1.4072	0	305
23	AcOEt	0.228	331	0.45	0.00	74.7	97.86	6.02	1.78	1.3614	0	164
24	acetone	0.355	488	0.62	0.08	54.7	73.55	20.56	2.69	1.3587	0	193
25	ACN	0.46	581	0.66	0.19	40.4	52.43	35.94	3.92	1.3441	0	178
26	MeNO ₂	0.481	669	0.75	0.22	42.4	53.64	35.87	3.56	1.3819	0	65
27	DMSO	0.444	708	1	0.00	61.3	71.40	46.45	4.06	1.4793	0	362
28	F	0.775	1568	0.97	0.71	36.5	39.54	109.50	3.37	1.4475	0	270
29	NMF	0.722	910	0.90	0.62	50.6	58.48	182.40	3.86	1.4319	0	287
30	DMF	0.386	581	0.88	0.00	58.1	77.40	36.71	3.82	1.4305	0	294
31	MeOH	0.762	858	0.60	0.98	30.8	40.43	32.66	2.87	1.3284	0	218
32	EtOH	0.654	676	0.54	0.86	44.9	58.41	24.55	1.66	1.3614	0	235
33	TFE	0.898	573	0.73	1.51	41.5	72.40	26.67	2.52	1.2907	0	
34	<i>i</i> -PrOH	0.546	558	0.48	0.76	59.0	76.51	19.92	1.66	1.4772	0	236
35	<i>n</i> -BuOH	0.586	485	0.47	0.84	73.1	91.53	17.51	1.75	1.3993	0	231
36	t-BuOH	0.389	467	0.41	0.42	73.1	93.95	12.47	1.66	1.3877	0	247
37	BnOH	0.608	612.9	0.98	0.60	91.6	103.67	12.70	1.66	1.5404	0	208
38	EG	0.79	1050	0.92	0.90	50.8	56.01	37.70	2.31	1.4318	0	224

39	TEG	0.682	786.4	0.88	0.66	118.9	133.48	23.69	5.58	1.4558	0	260
40	water/MeOH	0.71									0	
41	water	1	2294	1.09	1.17	16.7	18.00	78.36	1.85	1.3330	0	156
42	Tampon										0	
43	AcOH	0.648	357	0.64	1.12	46.5	57.24	6.15	1.68	1.3719	0	139
44	Et ₃ N	0.043	231	0.09	0.00	105.4	138.81	2.42	0.66	1.4010	0	650
45	<i>i</i> -Pr ₂ NH	0.145	314						1.15	1.3924	0	
46	<i>i</i> -PenOH	0.565	510.8	0.40	0.84	87.2	108.87	15.19	1.82	1.4085	0	227
47	CS_2	0.065	412	0.51	0.00	49.1	60.28	2.64	0.06	1.6275	0	0
48	Месус	0.006	255.4		0		127.67	2.02	0	1.4231	0	0
49	PhCl	0.108	383	0.68	0.00	83.9	101.68	5.62	1.69	1.5248	0.5	38

^{*a*} CHex: cyclo-hexane, tBuPh: tert-butylbenzene, PhBr: bromobenzene, AcPh: acetophenone, DCE: 1,2-di-chloroethane, DME: 1,2-dimethoxyethane, 14D: 1,4-dioxane, THF: tetrahydrofurane, AcOEt: ethyl acetate, ACN: acetonitrile, DMSO: dimethylsulfoxide, F: formamide, NMF: N-methylformamide, DMF: N,N-dimethylformamide, TFE: 2,2,2-trifluoroethanol, EG: ethylene glycol, TEG: triethylene glycol, AcOH: acetic acid, i-PenOH: iso-pentanol, Mecyc: methylcyclopentane, PhCl: chlorobenzene. ^{*b*} Given in ref. 1. ^{*c*} Given in ref. 2. ^{*d*} Given in ref. 3. ^{*e*} For *n*-heptane.

equation	nitroxide	slope α_1	error ^a	y-intercept	error ^a	R^{2b}	Nc	outliers
2a	2•	1.19	9	-3.65	140	0.96	10	2,5,6,26,39
2b	3•	0.84	4	0.89	75	0.85	38	22,30,39
2c	4c•	0.70	3	2.75	47	0.94	40	28,29,35,39
2d	4t•	0.72	3	2.10	52	0.92	43	39
2e	5c•	0.69	4	3.00	63	0.89	40	31,34,39,44
2f	5t•	0.71	3	2.32	51	0.92	42	18,39
2g	6c•	0.82	3	0.84	50	0.94	41	16,28,39
2h	6t•	0.69	3	2.61	50	0.92	42	28,39
2i	7t•	0.60	3	4.00	49	0.85	42	26,39

Table 2SI. Linear relationships $a_N = f(a_{N,1})$ for 2 - 7t - in various solvents (eq. 2).

-

^{*a*} Error given on the last digit. ^{*b*} Square of the regression coefficient. ^{*c*} Number of data.

Table 3SI. Linear relationships $a_N = f(a_{N,3})$ for 4• - 7t• in various solvents (eq. 3).

equation	nitroxide	slope α_2	error ^a	y-intercept	error ^a	R^{2b}	Nc	outliers
3a	4c•	0.77	4	3.05	50	0.94	36	19,28,30,35,45
3b	4t•	0.78	4	2.62	56	0.90	40	28
3c	5c•	0.72	4	3.78	59	0.90	35	19,28,30,31,44,45
3d	5t•	0.75	3	2.96	46	0.94	35	6,18,19,28,30,45
3e	6c•	0.87	3	1.56	43	0.96	34	6,15,19,22,28,39,45
3f	6t•	0.78	3	2.61	48	0.94	39	28,30
3g	7t•	0.66	3	4.21	40	0.94	38	26,28,39

^{*a*} Error given on the last digit. ^{*b*} Square of the regression coefficient. ^{*c*} Number of data.

equation	nitroxide	slope α_3	error ^a	y-intercept	error ^a	R^{2b}	Nc	outliers
4a	4c•	1.08	3	-7.00	154	0.96	40	29
4b	5c•	1.00	4	-3.89	205	0.94	39	5,29
4c	60•	1.00	4	-2.19	185	0.94	40	29

Table 4SI. Linear relationships $a_{\beta,P,c} = f(a_{\beta,P,3})$ for **4c**• - **6c**• in various solvents (eq. 4).

^a Error given on the last digit. ^b Square of the regression coefficient. ^c Number of data.

Table 5SI. Linear relationships $a_{\beta,P,t} = f(a_{\beta,P,3})$ for 4t - 7t - in various solvents (eq. 5).

equation	nitroxide	slope α_4	error ^a	y-intercept	error ^a	R^{2b}	Nc	outliers
5a	4t•	1.21	4	-9.60	186	0.96	38	29,40,41
5b	5t•	1.28	5	-12.41	235	0.96	38	29,40,41
5c	6t•	1.50	5	-25.00	257	0.96	38	28,29,41
5d	7t•	0.78	4	13.04	174	0.92	39	29,35

^{*a*} Error given on the last digit. ^{*b*} Square of the regression coefficient. ^{*c*} Number of data.

Table 6SI. Plots y = f(x) for each pair of diastereoisomers (eqs. 6).

equation	<i>x</i> -axis	y-axis	slope	error ^a	y-intercept	error ^a	R^{2b}	Nc	outliers
6a	4c•	4t•	1.12	3	-1.46	136	0.99	43	41
6b	5c•	5t•	1.35	4	-10.89	165	0.97	44	5
6c	6c•	6t•	1.53	5	-22.89	243	0.97	43	28

^a Error given on the last digit. ^b Square of the regression coefficient. ^c Number of data

eq.	nitroxide	y-intercept ^a	$a_2^{a,b}$	$a_4^{a,b}$	$a_5^{a,b}$	R^{2c}	N^d	F-test ^e	$W_{f(\varepsilon r)}^{f}$	$w_{\rm E}^{f}$	W_{c}^{f}	outliers
10a	1• <i>g</i>	14.82 (14)	_h	0.056 (2)	_h	0.94	41	280	11^{i}	89		29,39
10b	2 • ^j	15.09 (44)	_h	0.058 (6)	_h	0.93	15	82	14^{i}	86		2,15,26
10c	3•	13.55 (4)	_h	$0.017~(6)^k$	$0.0006 (1)^l$	0.88	28	95		34	66	14,28
10d	4c•	13.46 (2)	_h	0.020 (4)	0.0004 (1)	0.91	39	182		48	52	33
10e		13.27 (5)	$0.62(17)^m$	_h	0.0006 (1)	0.91	38	176	22		78	33,43
10f	4t•	13.12 (3)	_h	0.020 (10)	0.0004 (1)	0.90	39	171		48	52	33
10g		12.91 (5)	0.75 (16)	_h	0.0006 (1)	0.92	38	197	26		74	33,43
10h	5c•	13.43 (3)	_h	0.027 (4)	$0.0003 (1)^n$	0.89	37	135		62	38	31,44
10i		13.27 (7)	0.48 (22)°	_h	0.0006 (1)	0.86	36	107	18		82	31,33,43
10j	5t•	13.11 (3)	_h	0.028 (3)	$0.0003(1)^p$	0.90	38	154		65	35	14,18
10k		12.92 (7)	$0.71(20)^n$	_h	0.0005 (1)	0.87	38	115	28		72	33,43
101	6c•	13.34 (3)	_h	0.036 (4)	$0.0002 (1)^q$	0.90	39	167		78	22	39
10m		13.03 (6)	1.08 (20)	_h	0.0006 (1)	0.90	38	165	33		64	33,43
10n	6t•	13.09 (3)	_h	0.022(4)	0.0004 (1)	0.90	39	160		51	49	33
10o		12.87 (6)	0.73 (13) ^r	_h	0.0006 (1)	0.90	38	157	25		75	33,43
10p	7t•	13.14 (3)	_h	0.024 (3)	0.0002 (1)	0.86	33	96		68	32	none

Table 7SI. Koppel-Palm linear correlations of a_N for 1 - 7t.

^{*a*} Errors are given on the last digit in parentheses. ^{*b*} Student *t*-test at 99.99% unless otherwise mentioned. ^{*c*} Square of the regression coefficient. ^{*d*} Number of data. ^{*e*} Student-Fischer *F*-test given at 99.99% unless otherwise mentioned. ^{*f*} Weight of each parameter in percent with an error of \pm 7% as given by eqs. eqs.18 and 19. ^{*g*} Polarizability was the only parameter affording reliable statistical outputs, i.e., $a_1 = 1.61$ (50) and t = 99.73%. ^{*h*} Not included in the correlation. ^{*i*} Given for $f(n^2)$. ^{*j*} $a_1 = -2.39$ (1.59) and *t*-test at 84%. Other possibilities were even worse. ^{*k*} t = 98.50%. ^{*i*} t = 99.00%. ^{*m*} t = 99.92%. ^{*n*} t-test at 99.94%. ^{*o*} t = 96.4%. ^{*p*} t-test at 99.90%. ^{*q*} t = 99.35%. ^{*r*} t = 99.98%.

eq	nitroxide	$\log a_{\beta,\mathrm{P},0}^{a}$	$b_2{}^{a,b}$	$b_4{}^{a,b}$	$b_5{}^{a,b}$	$b_6{}^{a,b}$	R^{2c}	F^d	Ne	$w_{f(\varepsilon r)}^{f}$	w_E^f	W_c^f	w_{VM}^{f}	outliers
11a	3•	50.4 (7)	-6.8 (12)	_g	_g	$0.014(4)^{h}$	0.79	62	35	60			40	34
11b	4c•	47.8 (7)	-5.8 (12)	_g	$-0.0019(5)^{i}$	0.012 (4)	0.87	82	39	41		34	25	41
11c	4t•	52.2 (8)	-5.6 (14) ⁱ	_g	-0.0026 (5)	0.012 (5) ^j	0.86	74	39	36		41	23	41
11d		51.7 (8)	$-5.8(15)^k$	-0.065 (22) ^l	_g	$0.012 (4)^m$	0.83	57	38	41	32		27	28,29
11e	5c•	47.0 (7)	$-4.3(13)^n$	_g	$-0.0022(5)^{h}$	0.009 (4)°	0.82	54	39	34		44	22	41
11f	5t•	52.7 (7)	-6.1 (13)	_g	-0.0029 (5)	$0.013(4)^{p}$	0.90	100	39	35		42	23	41
11g		52.0 (7)	-6.2 (11)	$-0.075(20)^q$	_g	$0.013 (4)^r$	0.88	82	38	40	34		26	28,29
11h	6c•	48.6 (7)	-5.3 (13) ^h	_ <i>g</i>	$-0.0016(5)^{t}$	$0.009 (4)^u$	0.82	55	39	44		33	23	41
11i	6t•	51.8 (11)	-10.4 (18)	_g	-0.0009 (5) ^w	$0.015(6)^{x}$	0.82	54	40	56		19	25	none
11j		51.1 (9)	-8.4 (18)	$-0.064(27)^{z}$	_g	0.014 (5) ^{aa}	0.84	60	39	48	25		27	29
11k	7t•	54.5 (3)	-6.3 (10)	_g	-0.0020 (4)	_ g	0.87	85	28	57		43		31,32,34-36,38,41
111		53.4 (7)	-5.2 (11)	_g	-0.0018 (4) ^{bb}	$0.007 (4)^{x}$	0.89	63	28	45		38	17	31,32,34-36,38,41

Table 8SI. Koppel – Palm multiparameter correlations (eq. 11) based on the Kirkwood function of the relative permittivity $\varepsilon_{\rm r}$, the cohesive pressure (square of the Hildebrand solubility parameter δ), and on the molar volume $V_{\rm M}$ for nitroxides 3• - 7t•.

^{*a*} Errors are given on the last digit in parentheses. ^{*b*} Student *t*-test of confidence given at 99.99 % unless otherwise mentioned. ^{*c*} Square of the regression coefficient. ^{*d*} Student-Fischer *F*-test of reliability given at 99.99% confidence. ^{*e*} Number of data. ^{*f*} Weight of each parameter in per cent with an error of \pm 7% as given by eqs.18 and 19. ^{*g*} Not included in the correlation. ^{*h*} *t* = 99.90%. ^{*i*} *t* = 99.98%. ^{*j*} *t* = 99.00%. ^{*k*} *t* = 99.96%. ^{*l*} *t* = 99.38%. ^{*m*} *t* = 99.17%. ^{*n*} *t* = 99.80%. ^{*o*} *t* = 97.40%. ^{*p*} *t* = 99.64%. ^{*q*} *t* = 99.92%. ^{*r*} *t* = 99.97%. ^{*t*} *t* = 99.95%. ^{*u*} *t* = 97.80%. ^{*y*} *t* = 99.40%. ^{*w*} *t* = 91.70%. ^{*x*} *t* = 98.20%. ^{*y*} *t* = 97.70%. ^{*aa*} *t* = 98.60%. ^{*bb*} *t* = 99.96%.

eq.		y-intercept ^a	$c_1^{a,b}$	$C_3^{a,b}$	$C_5^{a,b}$	R^{2c}	F^d	Ne	$W_{\pi}*^{f}$	w_{α}^{f}	W_c^f	outliers
15a	1•	15.20 (3)	0.58 (5)	0.73 (4)	_8	0.95	355	41				29,39
15b		15.18 (3)	0.49 (6)	0.68 (4)	$0.0002~(6)^{h}$	0.96	281	41	30	58	12	29,39
15c	2•	14.00 (14)	$1.05 (20)^i$	1.13 (9)	_g	0.96	103	12				2,15,26
15d	3•	13.57 (4)	0.55 (7)	0.41 (6)	_ g	0.84	86	35	55	45		41
15e	4c•	13.47 (3)	0.45 (6)	0.40 (4)	_g	0.87	120	39				41
15f		13.41 (3)	0.29 (6)	0.23 (5)	0.0004 (1)	0.93	167	39	27	26	46	33
15g	4t•	13.13 (3)	0.48 (5)	0.39 (4)	_ g	0.91	173	39				41
15h		13.07 (3)	0.35 (6)	0.34 (4)	0.0003 (1)	0.93	154	40	30	27	43	none
15i	5c•	13.40 (4)	0.51 (6)	0.40 (5)	_g	0.87	114	37				1,31,41
15j		13.34 (4)	0.36 (6)	0.35 (5)	0.0004 (1)	0.91	117	38	27	36	37	1,31
15k	5t•	13.15 (3)	0.44 (6)	0.39 (4)	_g	0.87	119	39				41
151		13.09 (3)	0.33 (7)	0.35 (5)	0.0003 (1)	0.90	108	40	30	37	33	none
15m	6c•	13.31 (3)	0.61 (5)	0.46 (4)	_ g	0.93	240	38				39,41
15n		13.26 (3)	0.51 (6)	0.41 (4)	0.0002 (1)	0.95	227	39	39	42	19	39
150	6t•	13.14 (3)	0.37 (5)	0.43 (4)	_g	0.80	141	38				28,41
15p		13.07 (3)	$0.26(7)^k$	0.38 (5)	0.0003 (1)	0.91	123	40	22	45	33	none
15q	7t•	13.10 (3)	0.43 (6)	0.41 (4)	_g	0.88	132	39	44	56		none
15r		13.09 (2)	0.29 (5)	0.25 (4)	0.0003 (1)	0.94	150	32	29	31	40	26,33

Table 9SI. Kalmet – Aboud – Taft multiparameter correlations (eq. (15)) for a_N of nitroxides 1 · - 7t · based on the polarity/polarizability parameter π^* , the cohesive pressure *c*, and on the Hydrogene Bonding Donor (HBD) parameter α of solvents.

^{*a*} Errors are given on the last digit in parentheses. ^{*b*} Student *t*-test of confidence given at 99.99% unless otherwise mentioned. ^{*c*} Square of the regression coefficient. ^{*d*} Student-Fischer *F*-test of reliability given at 99.99% confidence. ^{*e*} Number of data. ^{*f*} Weight of each parameter in percent with an error of \pm 7% as given by eqs.18 and 19.^{*g*} Not used in the correlation. ^{*h*} *t* = 99.10%. ^{*i*} *t* = 99.98%. ^{*k*} *t* = 99.96%.

eq		y-intercept ^a	$d_1{}^{a,b}$	$d_3^{a,b}$	t^b	$d_5^{a,b}$	$d_6{}^{a,b}$	t	R^{2c}	F^d	Ne	$W_{\pi^*}^f$	w^{f}_{α}	W_c^f	w_{VX}^{f}	outliers
16a	2•	40.52 (58)	-9.87 (93)	-12.86 (63)	99.99	_g	_g	ſ	0.98	297	14	34	66			41
16b	3•	51.00 (11)	-2.75 (20)	-0.56 (18)	99.55	_g	_g	ſ	0.91	146	30	81	19			12,13,25,26,28,31
16c		50.63 (24)	-2.85 (27)	_g	_g	_g	0.005 (2)	95.50	0.95	221	27	88			12	10,12,13,25,26,28,31,32,35
16d	4c•	47.74 (16)	-2.80 (28)	$-0.88(21)^{h}$	99.98	_g	_g	ſ	0.85	90	36					25,26,28,29
16e		46.40 (49)	-2.94 (37)	$-0.69(28)^i$	98.30	_g	1.60 (47)	99.82	0.84	60	39	57	18		25	41
16f		46.79 (44)	-2.13 (39)	_g	_ g	-0.0020 (4)	1.53 (41)	99.94	0.88	82	39	42		34	24	41
16g	4t•	53.39 (13)	-3.61 (24)	-1.10 (17)	99.99	_g	_g	ſ	0.93	207	36					25,26,28,29
16h		51.31 (38)	-3.44 (38)	-0.77 (21) ^j	99.91	_g	1.15 (36)	99.96	0.91	117	38	63	19		18	28,29
16i	5c•	46.94 (13)	-2.63 (22)	0.82 (16)	99.99	_ <i>g</i>	_ g	ſ	0.89	126	35					5,25,26,28,29
16j		46.29 (31)	-2.45 (23)	$-0.66 (17)^k$	99.95	_g	0.69 (30)	97.10	0.90	97	35	63	23		14	5,25,26,28,29
16k	5t•	52.70 (14)	-3.68 (26)	-1.32 (19)	99.99	_g	_g	ſ	0.92	200	36					25,26,28,29
161		51.34 (40)	-3.44 (30)	$-0.92(22)^{h}$	99.98	_g	1.43 (38)	99.94	0.91	121	38	58	21		21	28,29
16m	6c•	48.65 (12)	-3.12 (22)	$-0.52(16)^{l}$	99.75	_g	_g	ſ	0.90	149	36					25,26,28,29
16n		47.86 (36)	-3.24 (27)	$-0.41(20)^m$	95.0	_g	0.96 (35)	99.00	0.89	96	39	71	12		17	41
160		48.13 (33)	-2.72 (30)	_g	_ g	$-0.0013(3)^n$	0.90 (31)	99.40	0.91	121	39	59		25	16	41
16p	6t•	51.52 (16)	-4.48 (29)	-1.20 (21)	99.99	_g	_g	ſ	0.93	217	37					25,26,29
16q		50.78 (40)	-4.26 (30)	-1.02 (22)	99.99	_g	0.77 (40)	94.30	0.94	159	37	68	22		10	25,26,29
16r	7t•	52•23 (23)	-1.89 (18)	_g	_ g	_g	0.007 (2)	99.36	0.87	102	32	77			23	10,12,13,25,26,28,29

Table 10SI. Kalmet – Aboud – Taft multiparameter correlations (eq. 16) for $a_{\beta,P}$ of nitroxides **2** - **7**t based on the polarity/polarizability parameter π^* , the cohesive pressure *c*, the intrinsic volume V_X , and on the Hydrogen Bonding Donor (HBD) parameter α of solvents.

^{*a*} Errors are given on the last digit in parenthesis. ^{*b*} Student *t*-test of confidence given at 99.99% unless otherwise mentioned. ^{*c*} Square of the regression coefficient. ^{*d*} Student-Fischer *F*-test of reliability given at 99.99% confidence. ^{*e*} Number of data. ^{*f*} Weight of each parameter in percent with an error of \pm 7% as given by eqs.18 and 19. ^{*g*} Not used in the correlation. ^{*h*} *t* = 99.98%. ^{*i*} *t* = 99.91%. ^{*k*} *t* = 99.95%. ^{*l*} *t* = 99.75%. ^{*m*} *t* = 95.00%. ^{*n*} *t* = 99.92%.

Figure 1SI. Plots $a_N vs \mu$ for **4t**• (top row), and plots $a_{\beta,P} vs \mu$ and $a_{\beta,P} vs \varepsilon_r$ for **4c**• and **4t**•, respectively (bottom row).

Figure 2SI. Plots a_N against c, V_X (Å), V_M (Å), α and π^* (left) for **4c**•, **6t**•, **4c**•, **6c**•, and **4c**• (from top to bottom) and $a_{\beta,P}$ against c, V_X (Å), V_M (Å), α and π^* (right) for **5t**•, **5c**•, and **6c**• (from top to bottom).

Figure 3SI. ORTEP of 10t•.

Figure 4SI. Koppel-Palm plots $a_N = f(E,c)$ for **5c**• (**O**). Empty symbols are for outliers.

Figure 5SI. Koppel – Palm plots with two (left) and three (right) molecular descriptors for $a_{\beta,P} = f(E_s f(\varepsilon_r))$ and for $a_{\beta,P} = f(E_s f(\varepsilon_r), V_M)$ for **5t**• (C). Empty symbols are for outliers.

Figure 6SI. Koppel – Palm plots with two (left) and three (right) molecular descriptors for $a_{\beta,P} = f(c,f(\varepsilon_r))$ and $a_{\beta,P} = f(c,f(\varepsilon_r),V_M)$ for **5t**• (\bigcirc). Empty symbols are for outliers.

Figure 7SI. KAT plots of (a) eqs. 150 (see Table 4SI) and (b) eq. 15i for 6t•.

Figure 8SI. KAT correlations (see Table 10SI) for **6c**• with (a) eq. 16m (b) eq. 16n (c) with eq. 16o. Empty symbols are for outliers.

Preparation of nitroxides

¹H nuclear magnetic resonance (NMR) spectra were recorded using an internal deuterium lock at ambient temperatures on the following instruments: Bruker AC400 (400 MHz) and Bruker AC300 (300 MHz). Data are presented as follows: chemical shift (in ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br means the signal is broad, dd = doublet of doublets), coupling constant (*J* in Hz) and integration. ³¹P NMR spectra were recorded on a Bruker AC300 (122 MHz) and on a Bruker AC400 (162 MHz) spectrometers with complete proton decoupling. Chemical shifts (δ) were reported in ppm using residual non-deuterated solvents as internal reference.³

High-resolution mass spectra (HRMS) were performed on a SYNAPT G2 HDMS (Waters) spectrometer equipped with atmospheric pression ionization source (API) pneumatically assisted. Samples were ionized by positive electrospray mode as follows: electrospray tension (ISV): 2800 V ; opening tension (OR): 20 V ; nebulization gas pression (nitrogen): 800 L/h. Low resolution mass spectra were recorded on ion trap AB SCIEX 3200 QTRAP equipped with an electrospray source. The parent ion (M⁺, [M+H]⁺, [M+Na]⁺ or [M+NH₄]⁺) is quoted.

Analytical thin layer chromatographies (TLC) were carried out on Merck Kieselgel 60 F254 plates. Flash column chromatographies were carried out on Merck Kieselgel 60 (230-400 mesh). Solvent system: gradients of DCM/MeOH; EtOAc/EtOH.

All experiments were performed under anhydrous conditions and an inert atmosphere of argon and, except where stated, using dried apparatus and employing standard techniques for handling air-sensitive materials. All reagents were weighed and handled in air at room temperature.

For EPR measurements, samples with 0.5 mM concentration of nitroxide were prepared in non-degassed solvents. Experiments were performed indifferently on Elexsys, EMX or ER 100D Bruker machines (a difference smaller than 0.1 G was noticed). EPR spectra were recorded with a gain of 2 10^5 (72 dB for Elexsys), a modulation amplitude of 1.0 G, a sweep width of 150 G, a sweep time of 21 s, and a power of 20 mW as parameters.

5-methylhex-5-en-2-one (2 g, 17.8 mmol) and diethyl phosphite (2.53 mL, 19.6 mmol) were stirred at rt under an ammoniac atmosphere for 16h monitoring by ³¹P NMR. Then, the mixture was poured in DCM. The solution was acidified with 1M HCl solution and washed with DCM (5 x 50 mL). The aqueous layer was basified with NaHCO₃ (\approx pH 8) and then extracted with DCM (5 x 50 mL), the organic layer dried (MgSO₄), and the solvent evaporated to afford 3.15 g (71%) of the aminophosphonate **2.** ¹H NMR (300 MHz, CDCl₃): δ 4.70 (s, 2H), 4.19-4.10 (m, 4H), 2.27-2.05 (m, 2H), 1.73 (s, 3H), 1.78-1.71 (m, 2H), 1.43 (br s, 2H), 1.33 (t, *J* = 7.1 Hz, 6H), 1.27 (d, *J* = 16 Hz, 3H). ³¹P NMR (122 MHz, CDCl₃): δ 32.3. ¹³C NMR (75 MHz, CDCl₃): δ 145.6 (C), 109.7 (CH₂), 62.2 (d, *J* = 7.7 Hz, CH₂), 62.1 (d, *J* = 7.7 Hz, CH₂), 51.6 (d, *J* = 147 Hz, C), 35.4 (d, *J* = 3.9 Hz, CH₂), 30.8 (d, *J* = 7.2 Hz, CH₂), 22.5 (CH₃), 22.0 (d, *J* = 2.8 Hz, CH₃), 16.5 (d, *J* = 5.5 Hz, 2 CH₃). HRMS (ESI) calc for C₁₁H₂₅NO₃P⁺: 250.1567 [M+H]⁺; found: 250.1564.

Synthesis of 3t and 3c:

The aminophosphonate **2** (6.5 g, 26.1 mmol) was dissolved in 50 mL DCE, then 100 mL of an aqueous solution of NaHCO₃ (13.2 g, 157 mmol) was added. This mixture heated to reflux under argon atmosphere. A solution of I₂ (7.3 g, 28.8 mmol) in 200 mL DCE was added dropwise. The mixture was stirred under reflux for 3 hours. Solid Na₂S₂O₃ was added to the reaction mixture and stirred for 30 minutes. The organic phase was decanted and the aqueous phase was extracted with DCM. The organic layers were collected, dried over MgSO₄, filtered and evaporated. The crude product was obtained as a mixture of 2 diastereoisomers (ratio 2:1). The two diastereoisomers was separated by column chromatography (DCM/MeOH gradient). Major diastereoisomer **3t**: 3.8 g, minor diastereoisomer **3c**: 1.9 g. Yield 88%.

3t

¹H NMR (400 MHz, CDCl₃): δ 4.27-4.11 (m, 4H), 2.22-2.13 (m, 1H), 2.07-1.97 (m, 2H), 1.89 (br s, 1H), 1.48 (br s, 1H), 1.46 (br d, J = 2.3 Hz, 1H), 1.36-1.31 (m, 12H). ¹³C

NMR (75 MHz, CDCl₃): δ 65.7 (d, J = 167 Hz, C), 62.5 (d, J = 7.2 Hz, CH₂),62.2 (d, J = 7.2 Hz, CH₂), 48.1 (C), 32.8 (CH₂), 31.4 (d, J = 1.1 Hz, CH₂), 30.9 (d, J = 14.9 Hz, CH₂), 21.1 (CH₃), 20.0 (d, J = 1.1 Hz, CH₃), 16.7 (d, J = 5.0 Hz, CH₃), 16.6 (d, J = 5.5 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 30.6. HRMS (ESI) calc for C₁₁H₂₃NO₃P⁺: 248.1410 [M+H]⁺; found: 248.1408.

¹H NMR (400 MHz, CDCl₃): δ 4.25-4.09 (m, 4H), 2.15-2.05 (m, 2H), 2.03-1.91 (m, 1H), 1.86-1.77 (m, 1H), 1.58-1.53 (m, 2H), 1.37-1.30 (m, 12H). ¹³C NMR (75 MHz, CDCl₃): δ 64.0 (d, J = 158 Hz, C), 62.4 (d, J = 6.6 Hz, CH₂), 61.9 (d, J = 6.6 Hz, CH₂), 46.4 (d, J = 13.8 Hz, C), 33.9 (d, J = 1.7 Hz, CH₂), 30.3 (d, J = 9.9 Hz, CH₂), 29.7 (d, J = 5.0 Hz, CH₂), 24.0 (CH₃), 22.0 (CH₃), 16.1 (d, J = 5.5 Hz, 2CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 30.2. HRMS (ESI) calc for C₁₁H₂₃NO₃P⁺: 248.1410 [M+H]⁺; found: 248.1408.

All the reactions hereafter were performed for the two pure diastereoisomers.

Synthesis of 4t and 4c.

A solution of aziridine **3t** (500 mg, 2.02 mmol) was dissolved in 2 mL of acetic acid. The mixture was stirred overnight at room temperature under argon. Then, the mixture was dissolved in DCM and poured on a saturated solution of NaHCO₃. After several extractions with DCM, the organic layer was dried with MgSO₄ and the solvent removed under reduced pressure. The crude product was purified by flash chromatography (DCM/MeOH gradient). The acetate **4t** was obtained as a colorless oil (385 mg, yield 62%). ¹H NMR (400 MHz, CDCl₃): δ 4.25-4.10 (m, 4H), 3.96 (d, *J* = 10.8 Hz, 1H), 3.85 (d, *J* = 10.8 Hz, 1H), 2.45-2.28 (m, 1H), 2.09 (s, 3H), 1.93-1.55 (m, 4H), 1.40-1.28 (m, 9H), 1.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.9 (C), 71.0 (d, *J* = 2.2 Hz,CH₂), 62.7 (d, *J* = 7.3 Hz, CH₂), 62.0 (d, *J* =

8.1 Hz, C), 61.9 (d, J = 8.1 Hz, CH₂), 60.3 (d, J = 164 Hz, C), 34.4 (d, J = 5.1 Hz, CH₂), 34.1 (CH₂), 25.6 (CH₃), 25.3 (d, J = 8.1 Hz, CH₃), 20.8 (CH₃), 16.5 (d, J = 5.9 Hz, CH₃), 16.4 (d, J = 5.9 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 30.8. HRMS (ESI) calc for C₁₃H₂₇NO₅P⁺: 308.1621 [M+H]⁺; found: 308.1622.

This product was obtained according to the **4t** procedure: aziridin **3c** (500 mg, 2.02 mmol) to acetate **4c** (433 mg, yield 70%). ¹H NMR (400 MHz, CDCl₃): δ 4.3-4.05 (m, 4H), 3.98 (d, J = 10.3 Hz, 1H), 3.77 (d, J = 10.3 Hz, 1H), 2.40-2.25 (m, 1H), 2.06 (s, 3H), 1.98-1.87 (m, 1H), 1.85-1.55 (m, 3H), 1.42 (d, J = 15.6 Hz, 3H), 1.35-1.27 (m, 6H), 1.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.7 (C), 70.7 (CH₂), 62.8 (d, J = 7.3 Hz, CH₂), 61.8 (d, J = 8.1 Hz, CH₂), 61.7 (d, J = 9.5 Hz, C), 60.4 (d, J = 172 Hz, C), 34.1 (d, J = 5.9 Hz, CH₂), 33.6 (d, J = 1.5 Hz, CH₂), 26.4 (CH₃), 25.3 (d, J = 8.1 Hz, CH₃), 20.71 (CH₃), 16.4 (d, J = 5.1 Hz, CH₃), 16.3 (d, J = 5.9 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 29.9. HRMS (ESI) calc for C₁₃H₂₇NO₅P⁺: 308.1621 [M+H]⁺; found: 308.1622.

Synthesis of 6t and 6c.

A solution of aziridin **3t** (2.23 g, 9.03 mmol), NaN₃ (3.52 g, 54.2 mmol) and NH₄Cl (2.46 g, 45.1 mmol), in 150 mL CH₃CN was heated for 4 hours at 80 °C. Then, the reaction was diluted with CH₃CN, filtered through Celite and evaporated. The crude product was purified by column chromatography (DCM/MeOH gradient) to obtain 1.97 g of **6t**, yield 75%. ¹H NMR (400 MHz, CDCl₃): δ 4.21-4.10 (m, 4H), 3.23 (d, *J* = 11.8 Hz, 1H), 3.18 (d, *J* = 12.0 Hz, 1H), 2.41-2.29 (m, 1H), 1.87-1.69 (m, 4H), 1.37 (d, *J* = 15.5 Hz, 3H), 1.33 (t, *J* = 7.0 Hz, 6H), 1.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 63.6 (d, *J* = 6.1 Hz, C), 62.8 (d, *J* = 7.7 Hz, CH₂), 62.2 (d, *J* = 7.7 Hz, CH₂), 61.7 (CH₂), 60.7 (d, *J* = 157 Hz, CH₂), 35.2 (d, *J* = 5.0 Hz, CH₂), 34.6 (CH₂), 26.4 (CH₃), 25.8 (d, *J* = 8.3 Hz, CH₃), 16.7 (d, *J* = 5.0 Hz, CH₃), 16.6 (d, *J*

= 5.5 Hz, CH₃). ³¹P NMR (162 MHz, CDCl₃): δ 31.1. HRMS (ESI) calc for C₁₁H₂₄N₄O₃P⁺: 291.1581 [M+H]⁺; found: 291.1580.

This product was obtained according to the **6t** procedure: aziridin **3c** (1.11 g, 4.49 mmol) to azide **6c** (1.07 g, yield 82 %). ¹H NMR (400 MHz, CDCl₃): δ 4.22-4.09 (m, 4H), 3.29 (d, *J* = 11.8 Hz, 1H), 3.14 (d, *J* = 11.8 Hz, 1H), 2.40-2.26 (m, 1H), 1.99-1.90 (m, 1H), 1.80-1.60 (m, 3H), 1.39 (d, *J* = 15.3 Hz, 3H), 1.32 (t, *J* = 7.0 Hz, 6H), 1.26 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 63.7 (d, *J* = 8.3 Hz, C), 62.7 (d, *J* = 7.7 Hz, CH₂),62.5 (d, *J* = 7.7 Hz, CH₂), 60.9 (d, *J* = 173 Hz, C), 60.82 (CH₂), 35.3 (d, *J* = 5.0 Hz, CH₂), 34.1 (d, *J* = 2.8 Hz, CH₂), 27.0 (d, *J* = 1.1 Hz, CH₃), 25.7 (d, *J* = 7.2 Hz, CH₃), 16.7 (d, *J* = 5.5 Hz, 2CH₃).³¹P NMR (162 MHz, CDCl₃): δ 29.8. HRMS (ESI) calc for C₁₁H₂₄N₄O₃P⁺: 291.1581 [M+H]⁺; found: 291.1580.

General procedure of secondary amine oxidation to nitroxide

A solution of corresponding secondary amine and *m*-CPBA (1.5 eq) in DCM was stirred 1 hour at 0 °C. Then, the reaction mixture was washed with Na₂S₂O₃, NaHCO₃. After extraction with DCM, the organic layer was dried with MgSO₄. The solvent was evaporated and the crude product was purified by flash chromatography (AcOEt/EtOH gradient).

This product was obtained according to the general procedure of oxidation of amine **4t** (366 mg, 1.20 mmol) to nitroxyde **4t**• (360 mg, yield 94%).HRMS (ESI) calc for $C_{13}H_{26}NO_6P^{+}\bullet$: 323.1492 [M+H]⁺; found: 323.1494.

20

This product was obtained according to the general procedure of oxidation of amine 4c (200 mg, 0.65 mmol) to nitroxyde 4c• (189 mg, yield 90%). HRMS (ESI) calc for $C_{13}H_{26}NO_6P^{+\bullet}$: 323.1492 [M+H]⁺; found: 323.1494.

This product was obtained according to the general procedure of oxidation of amine **6t** (800 mg, 2.76 mmol) to nitroxyde **6t**• (404 mg, yield 48%). HRMS (ESI) calc for $C_{11}H_{23}N_4O_4P^{+\bullet}$: 306.1451 [M+H]⁺; found: 306.1451.

6c•

This product was obtained according to the general procedure of oxidation of amine **6c** (500 mg, 1.72 mmol) to nitroxyde **6c**• (268 mg, yield 51%). HRMS (ESI) calc for $C_{11}H_{23}N_4O_4P^{+\bullet}$: 306.1451 [M+H]⁺; found: 306.1451.

Synthesis of 10t• and 10c•

10c•

A solution of minor acetate **4c**• (200 mg, 0.621 mmol) in MeOH (5 mL) at O °C was treated with K_2CO_3 (129 mg, 0.931 mmol) and stirred for 1 hour. The mixture was dissolved in DCM and poured on saturated solution of NaHCO₃. The organic layer was dried with MgSO₄ and concentrated *in vacuo*. Purification by flash chromatography (AcOEt/EtOH gradient) gave the pure product **10c**• as a red oil. (157 mg, 90 %). HRMS (ESI) calc for $C_{11}H_{24}N_4O_5P^{+}$ •: 281.1387 [M+H]⁺; found: 281.1384.

10t•

Saponification of **4t**•, flash chromatography and recrystallization from Et_2O gave the pure compound **10t**• as a red crystal. Yield 82% Mp = 63 °C. HRMS (ESI) calc for $C_{11}H_{24}N_4O_5P^{+}\bullet$: 281.1387 [M+H]⁺; found: 281.1384. $C_{11}H_{23}NO_5P^{\bullet}$ (280.3): calcd. C 47.14, H 8.27, N 5.00; found C 47.05, H 8.41, N 5.07.

Synthesis of 5t• and 5c•

To a solution of alcohol **10t**• (200 mg, 0.714 mmol) in DCM (3 mL) at room temperature under argon was added Et₃N (288 mg, 2.85 mmol), a catalytic amount of DMAP and pivaloyl chloride (172 mg, 1.43 mmol). The mixture was stirred for 1 day. Then, the mixture was poured on a saturated solution of NaHCO₃ and extracted with DCM. The organic layer was dried with MgSO₄ and the solvent removed *in vacuo*. The crude product was purified by flash chromatography (AcOEt/EtOH gradient) to afford product **5t**•, 203 mg, yield 78%. HRMS (ESI) calc for C₁₆H₃₂NO₆P⁺•: 365.1962 [M+H]⁺; found: 365.1962.

This compound was obtained using the same procedure: **10c**• (200 mg, 0.714 mmol) to product **5c**• (213 mg, yield 82%). HRMS (ESI) calc for $C_{16}H_{32}NO_6P^{+\bullet}$: 365.1962 [M+H]⁺; found: 365.1962.

3c :

¹H NMR (400 MHz, CDCl₃):

4c:

¹H NMR (400 MHz, CDCl₃):

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

6t:

¹H NMR (400 MHz, CDCl₃):

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8

¹ C. Reichardt, T. Welton, Solvent and Solvent Effect in Organic Chemistry, 4th ed., Wiley-VCH, Weinheim, 2011.

² G. E. Zaikov, R. G. Makitra, G. G. Midyana, L. I. Bazylyak, *Influence of the Solvent on Some Radical Reaction* Chemistry Research and Applications Series, Nova Science Publishers Inc., New York, **2010**.

³ H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem., 1997, 62, 7512.