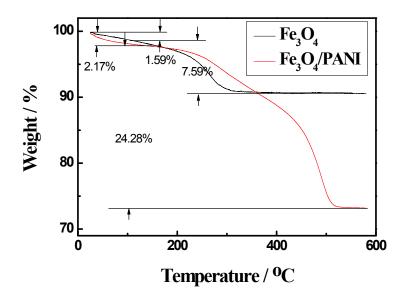
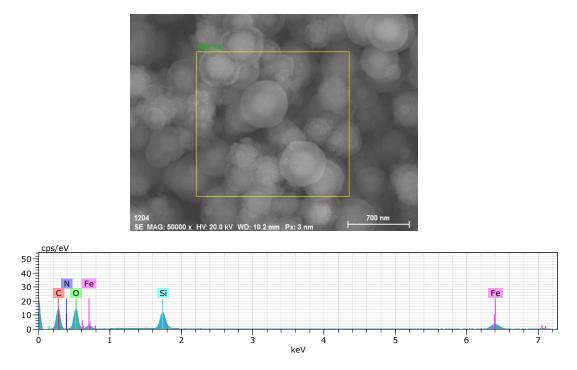
Supporting Information

Magnetic Conducting Polymer/Mesoporous SiO₂ Yolk/Shell Nanomaterials: Multifunctional Nanocarriers for Controlled Release of Doxorubicin

Long Zhang,^{a,b} Tianqing Liu^a* and Yuan Chen^b


^aSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou,

225002, Jiangsu, P. R. China


^bSchool of Animal Pharmaceuticals, Jiangsu Agri-animal Husbandry, Vocational

College, Taizhou 225300, Jiangsu, P. R. China

*Corresponding author. Email: tqliu@yzu.edu.cn

Figure S1. TG curves of PVP-modified Fe_3O_4 and Fe_3O_4 /PANI core/shell spheres. The first step loss is attributed to the loss of water or solvent, and the second step loss results from the degradation and decomposition of the polymer backbone. The PVP amount in Fe_3O_4 is calculated to be 7.7%. Considering no weight loss during the coating process of PANI on surfaces of Fe_3O_4 , the PANI amount in Fe_3O_4 /PANI core/shell spheres is calculated to be 18.4%.

Figure S2. SEM image and EDS analysis of $Fe_3O_4/PANI/SiO_2/mesoporous SiO_2$ core/shell spheres.