Supporting Information for

Multiple thermal magnetic relaxation in a two-dimensional ferromagnetic dysprosium(III) metal-organic framework

Cai-Ming Liu,^{a,*} Jin Xiong,^b De-Qing Zhang,^a Bing-Wu Wang,^{b,*} and Dao-Ben Zhu^a

 ^a Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. E-mail: cmliu@iccas.ac.cn.cn
^b State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. E-mail: wangbw@pku.edu.cn

Table S1. Continuous Shape Measures calculation for the Dy(III) ions in complex 1.

Dy1	EP-9	OPY-	HBPY-	JTC-9	JCCU-9	CCU-9	JCSAPR-9	CSAPR-9	JTCTPR-9	TCTPR-9	JTDIC-9	НН-9	MFF-9
		9	9										
ABOXIY	33.716	23.895	17.892	13.309	8.801	7.612	2.174	1.217	1.912	1.210	11.301	11.61	1.797
												6	

Dy1, nine-coordination

EP-9	1	D9h	Enneagon
OPY-9	2	C8v	Octagonal pyramid
HBPY-9	3	D7h	Heptagonal bipyramid
JTC-9	4	C3v	Johnson triangular cupola J3
JCCU-9	5	C4v	Capped cube J8
CCU-9	6	C4v	Spherical-relaxed capped cube
JCSAPR-9	7	C4v	Capped square antiprism J10
CSAPR-9	8	C4v	Spherical capped square antiprism

JTCTPR-9	9	D3h	Tricapped trigonal prism J51
TCTPR-9	10	D3h	Spherical tricapped trigonal prism
JTDIC-9	11	C3v	Tridiminished icosahedron J63
НН-9	12	C2v	Hula-hoop
MFF-9	13	Cs	Muffin

Dy2, eight-coordination

Dy2	OP-8	HPY-	НВРҮ-	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-
		8	8					8					8
ABOXIY	30.363	23.407	16.796	9.798	0.366	1.872	16.253	28.942	2.580	1.725	4.911	10.547	24.476

OP-8	1	D8h	Octagon
HPY-8	2	C7v	Heptagonal pyramid
HBPY-8	3	D6h	Hexagonal bipyramid
CU-8	4	Oh	Cube
SAPR-8	5	D4d	Square antiprism
TDD-8	6	D2d	Triangular dodecahedron
JGBF-8	7	D2d	Johnson gyrobifastigium J26
JETBPY-8	8	D3h	Johnson elongated triangular bipyramid J14
JBTPR-8	9	C2v	Biaugmented trigonal prism J50
BTPR-8	10	C2v	Biaugmented trigonal prism
JSD-8	11	D2d	Snub diphenoid J84
TT-8	12	Td	Triakis tetrahedron
ETBPY-8	13	D3h	Elongated trigonal bipyramid

Fig. S1. TGA curve for complex 1.

Fig. S2. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom) ac susceptibility of **1** at 2 K. the solid lines represent the best fitting with the sum of two modified Debye functions

Fig. S3. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom) ac susceptibility of **1** at 3 K. the solid lines represent the best fitting with the sum of two modified Debye functions.

Fig. S4. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom) ac susceptibility of **1** at 4 K. the solid lines represent the best fitting with the sum of

two modified Debye functions.

Fig. S5. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom) ac susceptibility of **1** at 5 K. the solid lines represent the best fitting with the sum of two modified Debye functions.

Fig. S6. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom)

ac susceptibility of **1** at 6 K. the solid lines represent the best fitting with the sum of two modified Debye functions.

Figure S7. Plot of *M* versus *H* at 1.9 K from –10000 to 10000 Oe for **1**.

Figure S8. The fragment for CASSCF/RASSI calculations. The vectors are the

calculated easy axes (green for Dy1 and pink for Dy2).

<i>T</i> (K)	$\chi_2(\text{cm}^3.\text{mol}^{-1})$	$\chi_1(\text{cm}^3.\text{mol}^{-1})$	$\chi_0(\text{cm}^3.\text{mol}^{-1})$	$\tau_1(s)$	α_1	$ au_2(s)$	α_2
2	13.6195	2.87424	0.94387	0.00114	0.40658	0.6535	0.16444
3	9.40215	3.77649	0.66312	0.00257	0.44481	0.22462	0.10008
4	9.64635	3.7187	0.37426	0.00031	0.33492	0.43189	0.48279
5	5.74306	4.9487	1.67699	0.00042	0.48001	0.1375	0.04474
6	4.90616	2.41576	4.36308	0.00023	0.24372	0.14306	0.2792

Table S2. Linear combination of two modified Debye model fitting parameters from2 K to 6 K of 1 under 2k Oe dc field.