## **Supplementary information**

## Synthesis of heteroatom-carbon nanosheets by solution plasma processing using *N*-methyl-2-pyrrolidone as precursor

Koangyong Hyun,<sup>a</sup> Tomonaga Ueno,<sup>ac</sup> Oi Lun Li<sup>ac</sup> and Nagahiro Saito<sup>\*abcd</sup>

<sup>a.</sup> Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
<sup>b.</sup> Social Innovation Design Center (SIDC), Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan.
<sup>c.</sup> Green Mobility Collaborative Research Center, Nagoya University, Nagoya 464-8603, Japan.

<sup>d.</sup> Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan. E-mail: hiro@rd.numse.nagoya-u.ac.jp



**Fig. S1** TEM images of the transition from carbon nanoparticles to carbon nanosheets by increasing the repetition frequency rate: (a) 25 kHz, (b) 100 kHz and (c) 200 kHz.



Fig. S2 Raman spectra of the samples prepared at 25, 100 and 200 kHz.

| Carbon material                         | Onset potential<br>(V vs. Ag/AgCl) | Nitrogen content<br>(at%) | Surface area<br>(m <sup>2</sup> g <sup>-1</sup> ) | Ref.         |
|-----------------------------------------|------------------------------------|---------------------------|---------------------------------------------------|--------------|
| N-doped double-layer templated graphene | -0.130                             | 3.02                      | 1318                                              | [61]         |
| N-doped graphene                        | -0.135                             | 20.50                     | 748                                               | [62]         |
| N-doped graphene nanoplatelets          | -0.170                             | 3.27                      | -                                                 | [63]         |
| NCNS                                    | -0.170                             | 1.30                      | 277                                               | Present work |

 Table S1 Comparison the NCNS with N-doped graphene reported in several previous works.