Supplementary Information

One-step synthesis of magnetic iron-aluminum oxide/graphene

oxide nanoparticles as a selective adsorbent for fluoride removal

from aqueous solution

Lei Liu,^a Zhaojie Cui,*^a Qianchi Ma,^a Wei Cui^a and Xu Zhang^a

a. School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Ji'nan, 250100, China.

* Corresponding author. E-mail: cuizj@sdu.edu.cn; Fax: +86 531 88361176; Tel: +86 531 88361176

	1			1 1		
GO	FeCl ₃ ·6H ₂ O	FeCl ₂ ·4H ₂ O	AlCl ₃ ·6H ₂ O	$FeCl_3 \cdot 6H_2O + FeCl_2 \cdot 4H_2O$	Fe ³⁺ :Fe ²⁺ :Al ³⁺	Sample
(g/500mL H ₂ O)	(g)	(g)	(g)	+ $AlCl_3 \cdot 6H_2O(g)$	(molar ratio)	No.
0.5	2.7967	1.3707	0.8327		1.5:1:0.5	1
	2.0979	1.0282	1.8739	5.0	1.5:1:1.5	2
	1.1991	0.5877	3.2132		1.5:1:4.5	3
	5.5934	2.7413	1.6653	10.0	1.5:1:0.5	4
	4.1959	2.0564	3.7477		1.5:1:1.5	5
	2.3983	1.1754	6.4263		1.5:1:4.5	6
	11.1868	5.4826	3.3306		1.5:1:0.5	7
	8.3918	4.1128	7.4955	20.0	1.5:1:1.5	8
	4.7965	2.3508	12.8527		1.5:1:4.5	9

Table S1-The composition ratio of raw materials to prepare different kinds of adsorbents

Nine kinds of adsorbents (IAO/GO) with different composition ratio of raw materials were prepared in the preliminary experiments. The concentration of GO dispersion was used as $0.1g/100 \text{ mL H}_2\text{O}$. Approximately 0.5 g of GO was added into 500 mL of deionized water and exfoliated by sonication for 2 h to obtain a uniform brown dispersion. The dispersion was centrifuged at 3000 rpm to remove the sediment. The supernatant was transferred into a 500 mL three-neck round bottom flask and then degassed with nitrogen gas for 30 min before use. The raw materials of FeCl₃·6H₂O, FeCl₂·4H₂O, and AlCl₃·6H₂O were sequentially added in the 500 mL GO solution. The molar ratio of Fe³⁺:Fe²⁺ was fixed at 1.5:1 and the molar ratio of Fe³⁺:Al³⁺ ranged as 3:1, 1:1 and 1:3. The mass ratio of raw materials (FeCl₃·6H₂O + FeCl₂·4H₂O + AlCl₃·6H₂O) and GO ranged as 10:1, 20:1 and 40:1. Among the nine adsorbents, Sample No. 3 had the highest capacity toward fluoride.