Supporting Information

A lanthanide metal–organic framework (MOF-76) for adsorbing dyes and fluorescence detecting aromatic pollutants

Xiao Lian, Bing Yan*

Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, China

Scheme S1. The structure and typical coordination environment of MOF-76(Ln).

Fig. S1 PXRD pattern of the as-synthesized MOF-76(Eu), MOF-76(Tb), MOF-76(Sm) and MOF-76(Dy).

Fig. S2 Energy dispersive analysis by X-rays (EDX) spectroscopy of MOF-76(Tb).

Fig. S4 Thermal gravimetric analysis (TGA) of MOF-76(Tb).

Fig. S5 Fourier transform infrared spectra (FT-IR) of MOF-76(Eu), MOF-76(Tb), MOF-76(Sm) and MOF-76(Dy).

Fig. S6 (a-f) PXRD patterns of the materials **3** after soaked in different dye soultions (methyl orange, methylene blue, rhodamine B, crystal violet, semixylenol orange, and basic red 2) for 48 h; (g) PXRD pattern of the original materials **3**.

Fig. S7 Excitation spectrum and emission spectrum of MOF-76(Sm).

Fig. S8 Excitation spectrum and emission spectrum of MOF-76(Dy).

Fig. S9 CIE chromaticity diagram of (a) MOF-76(Eu); (b) MOF-76(Tb); (c) MOF-76(Sm); (d) MOF-76(Dy).

Fig. S10 Emission spectra of MOF-76(Eu) introduced into various pure BTEX solvents when excited at 297 nm.

Fig. S11 Emission spectra of MOF-76(Tb) introduced into various pure BTEX solvents when excited at 296 nm.

Fig. S12 The fitting curve of the emission intensity (545 nm) of MOF-76(Tb) vs. acetophenone content.

Fig. S13 The setup for sensing BTEX volatiles (left); the ${}_5D^4 \rightarrow {}_7F^5$ transition intensity ratios from the emission spectra of MOF-76(Tb) after exposed to various volatile BTEX solvents for 1 h, and the excite wavelength is 296 nm (right).

Fig. S14 PXRD patterns of the MOF-76(Tb) treated by various BTEX solvents.

Fig. S15 Ultraviolet diffuse-reflectance spectra of 1,3,5-benzenetricarboxylic acid.

Fig. S16 UV-vis absorption spectroscopy of different BTEX slovents.

Table S1. The luminescent data of MOF-76(Ln) materials.

	Lifetime (µs)	Efficiency (%)	<i>Excitation wavelength</i> (nm)
MOF-76(Eu)	1082	55.6	297
MOF-76(Tb)	1719	72.3	296
MOF-76(Sm)	204	16.7	297
MOF-76(Dy)	231	17.1	296

Table S2. Responses of luminescence lifetimes of MOF-76(Tb) towards various BTEX solvents.

BTEX solvents	<i>Lifetime</i> (µs)	
Benzene	1586	
Toluene	1569	
Ethylbenzene	1503	
p-Xylene	1523	
o-Xylene	1506	
m-Xylene	1556	
Anisole	1593	
Cl-Benzene	1540	
Benzonitrile	1521	
m-Cresol	1561	
Diphenyl ether	1515	
Ethyl benzoate	1494	
Acetophenone	1518	