Electronic Supporting Information

Thiacalix[4]arene-supported heterodinuclear Ni^{II}-Ln^{III} complexes: slow magnetic relaxation behavior in dysprosium analogue

Jing-Yuan Ge, Jia-Ze Xie, Zhuang-Yu Zhao, Jing Ru, You Song, Jing-Lin Zuo*

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China

^{*} To whom correspondence should be addressed. Email: zuojl@nju.edu.cn; Fax: +86-25-83314502. Nanjing University.

Caption of Content

- **1. Table S1.** Selected bond angles (°) for 1–3
- **2. Table S2**. Fitting of the Cole-Cole plots for **3** with a generalized Debye model in the temperature range 1.9–5.0 K under 800 Oe dc field
- **3. Table S3**. Fitting of the Cole-Cole plots for **3'** with a generalized Debye model in the temperature range 1.9–3.4 K under zero dc field
- 4. Table S4. Shape analysis for the metal centers of 3
- 5. Fig. S1 Left: crystal structure of complex [(NiL₁)Gd(L₂)(CH₃OH)]·acetone (1). Right: crystal structure of complex [(NiL₁)Tb(L₂)(CH₃OH)]·acetone (2). Hydrogen atoms and uncoordinated solvents are omitted for clarity. (Ln green, Ni turquoise, S yellow, O red, N blue and C gray)
- 6. Fig. S2 (a) acetone molecule connects to the Ni^{II}-Dy^{III} clusters *via* weak C-H···O (green dashed line) and C-H··· π (pink dashed line) interactions (b) Every two neighbouring clusters are linked together to give a dimer through C-H··· π interaction between solvent and the framework in 3. (c) C-H··· π interactions drive the dimers to a 1D chain along *b* axis.
- **7. Fig. S3** TGA curves for complexes 1–3.
- Fig. S4 The XRPD patterns (red lines) obtained from the as-synthesized solids of 1–3 and the simulated XRPD patterns (blue lines) from single crystals of 1–3.
- **9. Fig. S5** Left: field-dependent magnetizations for **1** at T = 1.9-5.0 K and H = 0-70 kOe. Right: temperature dependence of magnetic entropy change $(-\Delta S_m)$ as calculated from the magnetization data of **1** at T = 1.9-5.0 K and 0-70 kOe.
- 10. Fig. S6 Frequency-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 3 at the indicated temperatures under zero dc field.
- 11. Fig. S7 Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 3 at the indicated frequencies under zero dc field.
- 12. Fig. S8 Plot of out-of-phase χ'' versus frequency at 1.9 K for 3 under the application of variable dc fields, ranging from 0 to 3000 Oe.

- 13. Fig. S9 The XRPD pattern of complex 3' is consistent with that of complex 3.
- 14. Fig. S10 Frequency-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 3' at the indicated frequencies under zero dc field.
- **15. Fig. S11** Cole-Cole plots for **3'** under zero dc field. The solid lines represent the fit to the Debye model at the indicated temperatures.
- 16. Fig. S12 Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 2 at the frequency of 999 Hz under zero dc field.
- 17. Fig. S13 Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 2 at the frequency of 999 Hz under 800 Oe dc field.

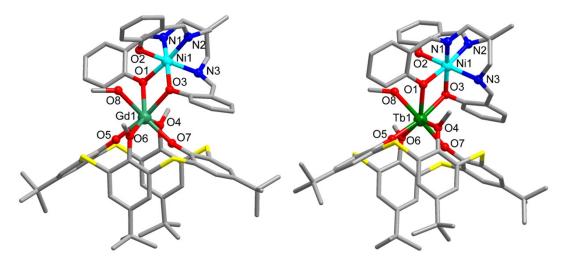
Table S1. Selected bond angles (*) for 1–3					
	1 (Gd)	2 (Tb)	3 (Dy)		
O(5)-Ln(1)-O(7)	101.98(12)	101.72(14)	102.05(10)		
O(5)-Ln(1)-O(3)	169.22(12)	169.45(14)	169.55(10)		
O(7)-Ln(1)-O(3)	86.39(11)	86.39(14)	86.06(9)		
O(5)-Ln(1)-O(1)	106.61(12)	106.78(14)	106.16(9)		
O(7)-Ln(1)-O(1)	134.18(11)	134.15(14)	134.35(9)		
O(3)-Ln(1)-O(1)	71.06(11)	71.06(13)	71.59(9)		
O(5)-Ln(1)-O(8)	92.88(12)	92.76(14)	92.63(9)		
O(7)-Ln(1)-O(8)	141.69(12)	141.61(14)	141.82(10)		
O(3)-Ln(1)-O(8)	76.36(11)	76.72(13)	76.95(9)		
O(1)-Ln(1)-O(8)	71.69(11)	72.07(13)	71.76(9)		
O(5)-Ln(1)-O(4)	81.38(11)	81.26(13)	81.48(9)		
O(7)-Ln(1)-O(4)	79.50(11)	79.67(13)	79.44(9)		
O(3)-Ln(1)-O(4)	107.08(10)	107.06(13)	106.74(9)		
O(1)-Ln(1)-O(4)	70.45(10)	70.25(12)	70.27(8)		
O(8)-Ln(1)-O(4)	138.11(11)	138.12(13)	138.08(9)		
O(5)-Ln(1)-O(6)	78.73(11)	78.88(13)	79.06(9)		
O(7)-Ln(1)-O(6)	78.33(11)	78.25(13)	78.57(9)		
O(3)-Ln(1)-O(6)	96.57(11)	96.44(13)	96.34(9)		
O(1)-Ln(1)-O(6)	141.71(10)	141.77(13)	141.43(9)		
O(8)-Ln(1)-O(6)	70.17(11)	69.89(13)	69.82(9)		
O(4)-Ln(1)-O(6)	146.27(9)	146.45(11)	146.72(8)		
N(1)-Ni(1)-N(2)	87.23(16)	87.40(19)	87.11(13)		
N(1)-Ni(1)-O(2)	98.00(16)	98.15(18)	98.10(13)		
N(2)-Ni(1)-O(2)	90.01(15)	89.84(17)	90.05(12)		
N(1)-Ni(1)-O(3)	169.11(15)	168.95(18)	168.56(12)		
N(2)-Ni(1)-O(3)	102.31(15)	102.18(17)	102.87(12)		
O(2)-Ni(1)-O(3)	87.36(13)	87.48(15)	87.60(11)		
N(1)-Ni(1)-O(1)	88.42(15)	88.30(17)	88.59(12)		
N(2)-Ni(1)-O(1)	173.57(15)	173.64(17)	173.47(12)		
O(2)-Ni(1)-O(1)	85.91(13)	86.12(15)	85.69(10)		
O(3)-Ni(1)-O(1)	82.48(13)	82.57(14)	81.93(10)		
N(1)-Ni(1)-N(3)	90.14(17)	90.1(2)	90.13(14)		

Table S1. Selected bond angles (°) for 1–3

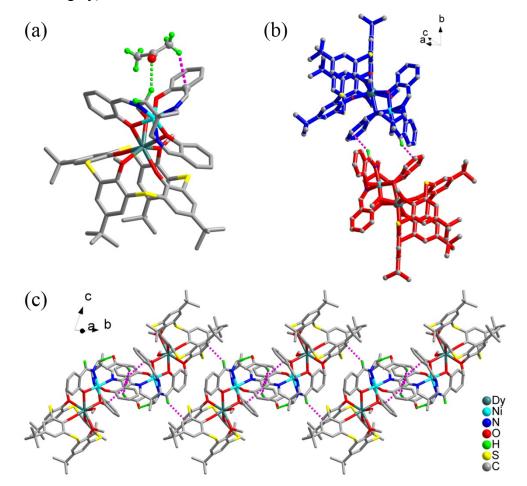
N(2)-Ni(1)-N(3)	83.86(16)	83.87(19)	83.84(13)
O(2)-Ni(1)-N(3)	169.58(16)	169.41(17)	169.50(12)
O(3)-Ni(1)-N(3)	85.74(15)	85.54(17)	85.46(12)
O(1)-Ni(1)-N(3)	100.88(14)	100.83(17)	101.09(11)
Ni(1)-O(1)-Ln(1)	102.77(13)	102.39(15)	102.40(10)
Ni(1)-O(3)-Ln(1)	103.61(14)	103.90(16)	103.98(11)

Table S2. Fitting of the Cole-Cole plots for **3** with a generalized Debye model in the temperature range 1.9–5.0 K under 800 Oe dc field

T / K	$\chi_{\rm S}$ / cm ³ mol ⁻¹	$\chi_{\rm T}$ / cm ³ mol ⁻¹	$\ln(\tau / s)$	α
1.9	0.734	9.954	-4.663	0.167
2.2	0.769	8.672	-5.517	0.133
2.5	0.809	7.762	-6.152	0.113
2.8	0.829	7.013	-6.650	0.099
3.3	0.841	6.005	-7.284	0.082
3.8	0.830	5.237	-7.746	0.073
4.5	0.801	4.404	-8.227	0.064
5.0	0.741	3.939	-8.510	0.062


Table S3. Fitting of the Cole-Cole plots for **3'** with a generalized Debye model in the temperature range 1.9–3.4 K under zero dc field

T / K	$\chi_{\rm S}$ / cm ³ mol ⁻¹	$\chi_{\rm T}$ / cm ³ mol ⁻¹	$\ln(\tau / s)$	α
1.9	0.547	0.870	-5.932	0.239
2.2	0.497	0.768	-6.532	0.181
2.5	0.454	0.686	-7.038	0.146
2.8	0.417	0.622	-7.451	0.127
3.1	0.386	0.567	-7.802	0.109
3.4	0.357	0.521	-8.103	0.108


Table S4.	Shape ana	lysis for	the metal	centers of 3
-----------	-----------	-----------	-----------	---------------------

	ML7	PBPY-7	COC-7	CTPR-7	JPBPY-7
	Dy1	3.137	3.687	3.258	5.505
PBPY-7 (D5h): Pentagonal bipyramid		COC-7 (C	C3v): Capped oct	ahedron	

CTPR-7 (C2v): Capped trigonal prism JPBPY-7 (D5h): Johnson pentagonal bipyramid J13

Fig. S1 Left: crystal structure of complex $[(NiL_1)Gd(L_2)(CH_3OH)]$ ·acetone (1). Right: crystal structure of complex $[(NiL_1)Tb(L_2)(CH_3OH)]$ ·acetone (2). Hydrogen atoms and uncoordinated solvents are omitted for clarity. (Ln green, Ni turquoise, S yellow, O red, N blue and C gray)

Fig. S2 (a) acetone molecule connects to the Ni^{II}-Dy^{III} clusters *via* weak C-H···O (green dashed line) and C-H··· π (pink dashed line) interactions (b) Every two

neighbouring clusters are linked together to give a dimer through C–H··· π interaction between solvent and the framework in **3**. (c) C–H··· π interactions drive the dimers to a 1D chain along *b* axis.

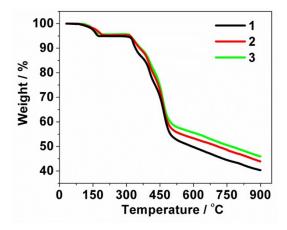
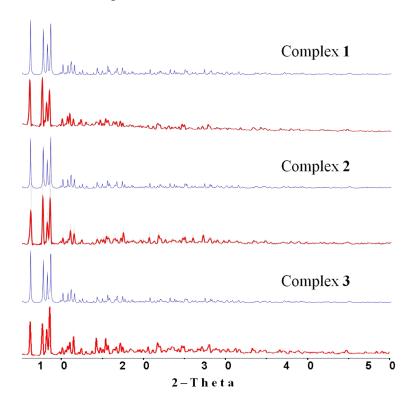



Fig. S3 TGA curves for complexes 1–3.

Fig. S4 The XRPD patterns (red lines) obtained from the as-synthesized solids of **1–3** and the simulated XRPD patterns (blue lines) from single crystals of **1–3**.

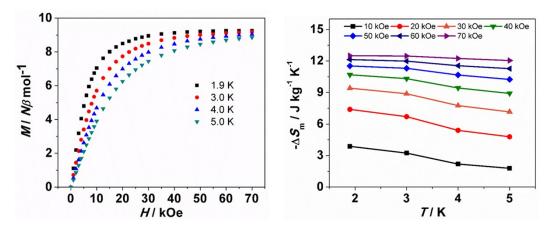


Fig. S5 Left: field-dependent magnetizations for 1 at T = 1.9-5.0 K and H = 0-70 kOe. Right: temperature dependence of magnetic entropy change $(-\Delta S_m)$ as calculated from the magnetization data of 1 at T = 1.9-5.0 K and 0-70 kOe.

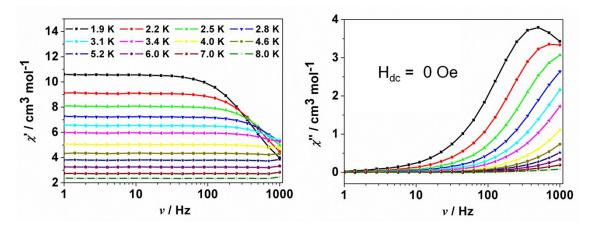


Fig. S6 Frequency-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 3 at the indicated temperatures under zero dc field.

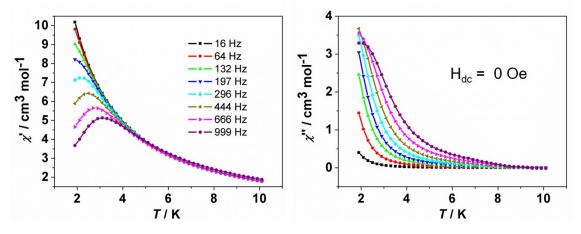


Fig. S7 Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 3 at the indicated frequencies under zero dc field.

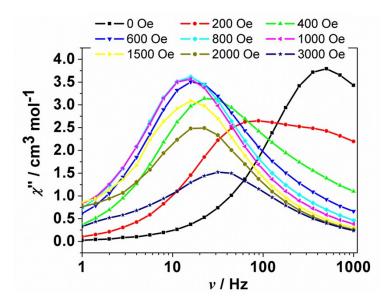



Fig. S8 Plot of out-of-phase χ'' versus frequency at 1.9 K for 3 under the application of variable dc fields, ranging from 0 to 3000 Oe.

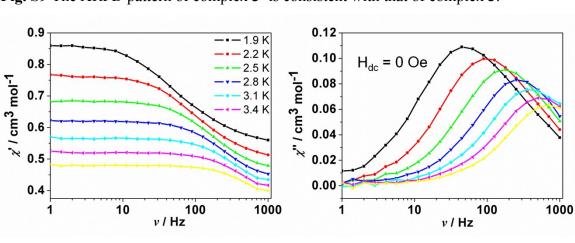
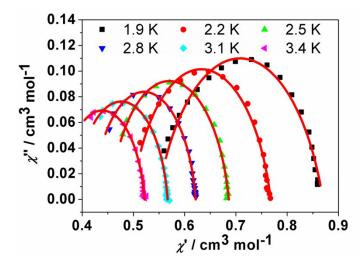



Fig. S9 The XRPD pattern of complex 3' is consistent with that of complex 3.

Fig. S10 Frequency-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 3' at the indicated frequencies under zero dc field.

v / Hz

Fig. S11 Cole-Cole plots for **3'** under zero dc field. The solid lines represent the fit to the Debye model at the indicated temperatures.

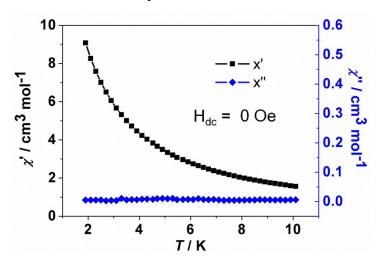


Fig. S12 Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 2 at the frequency of 999 Hz under zero dc field.

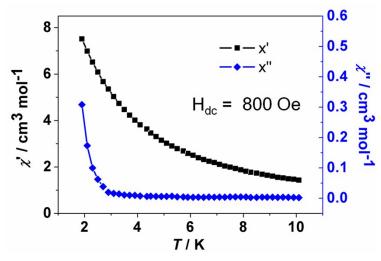


Fig. S13 Temperature-dependent in-phase χ' and out-of-phase χ'' ac susceptibility signals for 2 at the frequency of 999 Hz under 800 Oe dc field.