Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

# **Supporting Information**

### High efficient conversion of carbohydrates into 5-hydroxymethylfurfural using

## the bi-functional CrPO<sub>4</sub> catalyst

Siquan Xu<sup>†</sup>, Xiaopei Yan<sup>†</sup>, Quan Bu\*<sup>‡</sup>, Haian Xia\*<sup>†</sup>

<sup>†</sup>Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals,

College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

> <sup>‡</sup>School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang212013, China

#### 1. HPLC analysis

In this work, high performance liquid chromatograph (HPLC) with Zorbax SB-

C<sub>18</sub> chromatograph column and UV detector was used to analyze the HMF.



**Figure S1** HPLC analysis of the liquid product produced from the catalytic conversion of fructose. The reaction conditions were as follows: 1.0 g fructose, 0.125 g CrPO<sub>4</sub>, 10 mL H<sub>2</sub>O, 30 mL THF, reaction temperature: 140 °C, reaction time: 15 min. The detection conditions were as follows: UV detector with the wavelength was set to 281 nm and the mixture of water and methanol were used as the mobile phase.



Figure S2 HPLC result of HMF standard chemical.

# 2. GC-MS

The liquid products were analyzed by a GC chromatography (Agilent Technologies 7890A) equipped with a capillary column (Agilent PH-5; 0.32 mm × 30 m) and flame ionization detector (FID) under ramping temperature from 40 to 280 °C. Mass spectrometric analysis of the liquid products was performed with a 5975C inert MSD mass analyzer (Agilent Technologies) employing Triple-Axis Detector. GC Retention time of HMF was 22.15 min by injecting standard HMF compound.



**Figure S3** GC-MS plot for the liquid products produced from the catalytic conversion of fructose. The reaction conditions were as follows: 1.0 g fructose, 0.125 g CrPO<sub>4</sub>, 10 mL H<sub>2</sub>O, 30 mL THF, reaction temperature: 140 °C, reaction time: 15 min.



**Figure S4** GC-MS/MS of the liquid products produced from the catalytic conversion of fructose. The reaction conditions were as follows: 1.0 g fructose, 0.125 g CrPO<sub>4</sub>, 10 mL H<sub>2</sub>O, 30 mL THF, reaction temperature: 140 °C, reaction time: 15 min.

#### 3. NMR spectrum

NMR (Bruker Biospin AVANCE III, 300 MHz) Analytic was used to analyze the liquid product produced from the catalytic conversion of fructose. Sample is dissolved in the  $D_2O-d_6$ . 1. HMF

<sup>1</sup>H NMR (D<sub>2</sub>O-d<sub>6</sub>, 300 MHz): (ppm) 2.0, 4.64, 6.50, 7.18, 9.61;

<sup>13</sup>C NMR (D<sub>2</sub>O-d<sub>6</sub>, 75 MHz): (ppm) 57.1, 111.6, 122.0, 153.1, 157.7, 178.1;

2. Levulinic acid

<sup>1</sup>H NMR (D<sub>2</sub>O-d<sub>6</sub>, 300 MHz): (ppm) 2.09, 2.51, 2.72;

<sup>13</sup>C NMR (D<sub>2</sub>O-d<sub>6</sub>, 75 MHz): (ppm): 29.9, 30.6, 39.3, 177.3, 207.7;



**Figure S5** <sup>1</sup>H NMR of the liquid products in the THF phase produced from the catalytic conversion of fructose. The reaction conditions were as follows: 1.0 g fructose, 0.125 g CrPO<sub>4</sub>, 10 mL H<sub>2</sub>O, 30 mL THF, reaction temperature: 140 °C, reaction time: 15 min.



**Figure S6** <sup>13</sup>C NMR of the liquid products in the THF phase produced from the catalytic conversion of fructose. The reaction conditions were as follows: 1.0 g fructose, 0.125 g CrPO<sub>4</sub>, 10 mL H<sub>2</sub>O, 30 mL THF, reaction temperature: 140 °C, reaction time: 15 min.



**Figure S7** <sup>1</sup>H NMR of the liquid products in the water phase produced from the catalytic conversion of fructose. The reaction conditions were as follows: 1.0 g fructose, 0.125 g CrPO<sub>4</sub>, 10 mL H<sub>2</sub>O, 30 mL THF, reaction temperature: 140 °C, reaction time: 15 min.



**Figure S8** <sup>13</sup>C NMR of the liquid products in the water phase produced from the catalytic conversion of fructose. The reaction conditions were as follows: 1.0 g fructose, 0.125 g CrPO<sub>4</sub>, 10 mL H<sub>2</sub>O, 30 mL THF, reaction temperature: 140 °C, reaction time: 15 min.