Electronic Supplementary Information

Electrical transport and mechanical properties of thermoelectric tin selenide

Kriti Tyagi^{a,b}, Bhasker Gahtori^{a,1}, Sivaiah Bathula^a, Niraj Kumar Singh^a, Swati Bishnoi^{a,b}, S. Auluck^a, A. K. Srivastava^a and Ajay Dhar^{a,1}

^aCSIR-Network for Solar Energy, CSIR-National Physical Laboratory, Physics of Energy Harvesting Division, Dr. K. S. Krishnan Road, New Delhi – 110012, India ^bAcademy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, New Delhi- 110012, India

Figure S1: (a) Electronic band structure of *Pnma*-phase of SnSe. Fermi level is indicated by $E_{F.}$ The crystal structure used to carry out DFT calculations is orthorhombic. The top of valence and lies along Z – Γ direction while bottom of conduction band is located at Γ point yielding an indirect band gap of 0.74 eV. (b) Partial density of states for *Pnma*-phase of SnSe.

¹ Corresponding author email: <u>adhar@nplindia.org</u>; <u>bhasker@nplindia.org</u>

Tel. : +91 11 4560 9455/9456; Fax: +91 11 4560 9310

Figure S2: Band gap calculation of SnSe (Pnma) from UV absorption spectra.

Figure S3: Temperature dependence of thermoelectric compatibility factor of as-synthesized p-type SnSe.