Supplementary information

A NHC silver(I) macrometallocycle: synthesis, structure and selective recognition of iodide anion

Qing-Xiang Liu,* Jun-Ren Chen, Xiao-Feng Sun, Xiao-Jun Zhao, Zhi-Xiang Zhao, Kang-Qing Cai

Table of contents

- 1. CCDC numbers for complex 1
- 2. The Fig.s of fluorescence and UV/vis spectroscopies for complex 1 (Fig.s S1-S5)
- 3. Whole ¹H NMR spectra for Complex 1 and 1·I⁻ (Fig. S6)
- 4. HRMS spectra of 1 · I⁻ (Fig. S7)
- 5. The infrared spectra of complex 1 and $1 \cdot I^-$ (Fig. S8)
- 6. The ¹H NMR and ¹³C NMR spectra of precursor and complex 1 (Fig.s S9-S12)
- 7. HRMS spectra of LH₂·I₂, LH₂·(PF₆)₂ and 1 (Fig.s S13-S15)

1. CCDC numbers for complex 1

CCDC 853182 contains the supplementary crystallographic data for complex 1. These obtained data can be free of charge via http//www.ccdc.cam.ac.uk/conts/retrieving.html, from the Cambridge or Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

2. The Fig.s of fluorescence and UV/vis spectroscopies for complex 1 (Fig. S1-Fig. S4).

Fig. S1 Stern-Volmer plot of **1** quenched by I⁻ in acetonitrile solutions at 25 °C. K_{SV} was calculated as 2.3×10^4 M⁻¹ (R = 0.994).

Fig. S2 Emission (at 362 nm) of **1** at different concentrations of I⁻ (0, 0.25, 0.33, 0.8, 1.5, 1.75, 2.0, 4.0, 5.0×10^{-5} mol/L) added, normalized between the minimum emission (0.0 mol/L I⁻) and the emission at 5.0×10^{-5} mol/L I⁻ in CH₃CN at 25 °C. The

detection limit was determined to be 6.1×10^{-7} mol/L.

Fig. S3 Benesi-Hildebrand plot of **1** (1 × 10⁻⁵ mol/L) in the presence of I⁻ in acetonitrile at 205 nm at 25 °C. C_I- is 0, 0.04, 0.11, 0.17, 0.25, 0.33, 0.43, 0.67, 1.0, 1.5, 2.4, 3.0, 4.0, 6.0, 9.0, 12.0, 15.0, 20.0×10^{-5} mol/L.

Fig. S4 Change ratio $((F_i-F_0)/(F_I-F_0))$ of fluorescence intensity of **1** upon addition of 1 equiv. I⁻ in the presence of 5 equiv. background anions. 1: I⁻; 2: I⁻ + F⁻; 3: I⁻ + CI⁻; 4: I⁻ + Br⁻; 5: I⁻ + H₂PO₄⁻; 6: I⁻ + HSO₄⁻; 7: I⁻ + OAc⁻; 8: I⁻ + NO₃⁻ in acetonitrile at 25°C. F_i is the fluorescence intensity in the presence of I⁻ and other anions. F_I⁻ is the fluorescence intensity in the presence of I⁻ alone.

Fig. S5 Fluorescence spectra of 1 (1 \times 10⁻⁵mol/L) with I⁻ salts with different countercations (TBA⁺, K⁺, Na⁺, NH₄⁺, Cu⁺, Hg²⁺).

Fig. S6 Whole ¹H NMR spectra in DMSO- d_6 . (a) Complex 1; (b) 1 and 1 equiv. of TBAI; (c) 1 and 1.5 equiv of TBAI; (d) 1 and 2 equiv. of TBAI.

4. HRMS spectrum of 1·I⁻.

Fig. S7 HRMS spectrum of $1 \cdot I^-$. MS (EI): m/z [M]⁺ = 669.0721.

5. The infrared spectra of complex 1 and $1 \cdot I^{-}$

Fig. S8 Infrared spectroscopy of complex 1 (top) and $1 \cdot I^{-}$ (bottom).

6. The ¹H NMR and ¹³C NMR spectra of precursor and complex 1.

Fig. S9 ¹H NMR of 1,1'-[1,2-ethanediyl-bis(oxy-1,2-ethanediyl)]-bis(3-ⁿpropylbenzimidazolium-1-yl) dihexafluorophosphate $(LH_2 \cdot (PF_6)_2)$ (400 MH_Z, DMSO-*d*₆).

Fig. S10 ¹³C NMR of 1,1'-[1,2-ethanediyl-bis(oxy-1,2-ethanediyl)]-bis(3-ⁿpropylbenzimidazolium-1-yl) dihexafluorophosphate $(LH_2 \cdot (PF_6)_2)$ (100 MH_Z, DMSO-*d*₆).

Fig. S11 ¹H NMR of Silver-{C,C'-1,1'-[1,2-ethanediyl-bis(oxy-1,2-ethanediyl)]bis(3-ⁿpropyl-benzimidazolium-1-yl)} hexafluorophosphate (1) (400 MH_Z, DMSO- d_6).

Fig. S12 ¹³C NMR of Silver-{C,C'-1,1'-[1,2-ethanediyl-bis(oxy-1,2-ethanediyl)]bis(3-ⁿpropyl-benzimidazolium-1-yl)} hexafluorophosphate (1) (100 MH_Z, DMSO- d_6).

7. HRMS spectra of LH₂·I₂, LH₂·(PF₆)₂ and 1.

Fig. S13 HRMS spectrum of $LH_2 \cdot I_2$. MS (EI): m/z [M-I⁻]⁺ = 563.1869, m/z [M-2I⁻]⁺ = 435.2749.

Fig. S14 HRMS spectrum of $LH_2 \cdot (PF_6)_2$. MS (EI): m/z $[M-(PF_6)]^+ = 581.2462$, m/z $[M-2(PF_6)]^+ = 435.2752$.

Fig. S15 HRMS spectrum of **1**. MS (EI): $m/z [M-(PF_6)-1]^+ = 541.1733$.