ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Hierarchical growth of ZnO nanorods over SnO₂ seed layer: Insights into electronic properties from photocatalytic activity

Luís F. da Silva,^{a*} Osmando F. Lopes,^b Ariadne C. Catto,^c Waldir Avansi Jr,^d Maria I.

B. Bernardi,^c Máximo S. Li,^c Caue Ribeiro^b and Elson Longo^a

a – LIEC, Instituto de Química, Universidade Estadual Paulista, P.O. Box 355, 14800-900, Araraquara, SP, Brazil

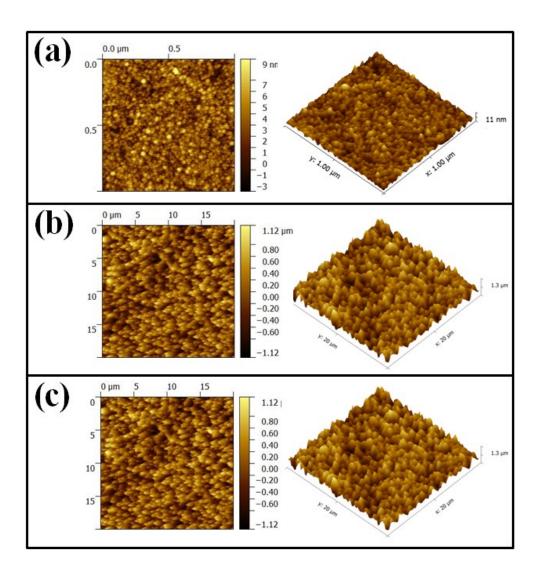
b – EMBRAPA Instrumentação, Rua XV de novembro, 1452, 13560-970, São Carlos, SP, Brazil

c – Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, 13566-590, São Carlos, SP, Brazil.

d – Departamento de Física, Universidade Federal de São Carlos, Rodovia Washington

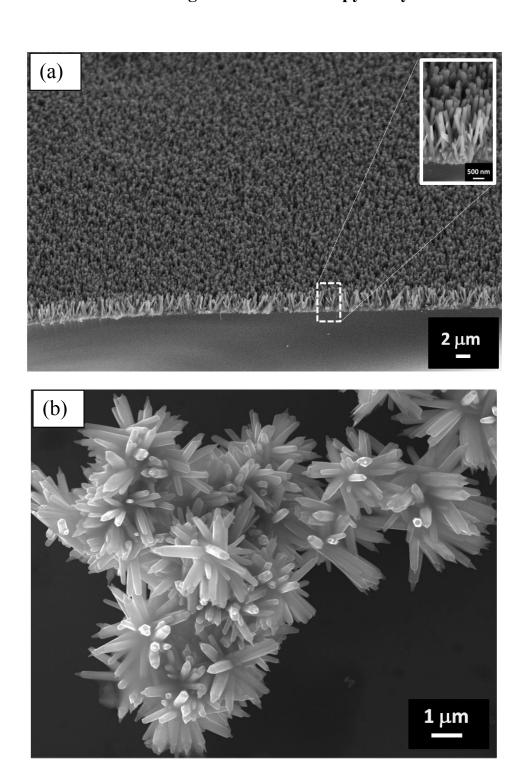
Luiz, km 235, 13565-905, São Carlos, SP, Brazil.

Corresponding author

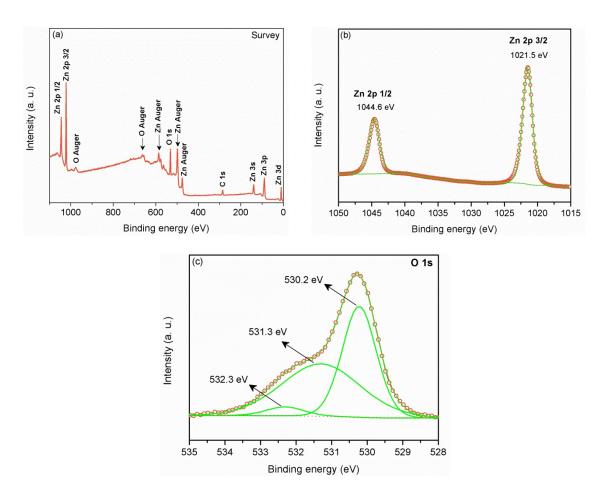

*E-mail: <u>lfsilva83@gmail.com</u>

1. Preparation of nanostructured SnO₂ thin film used as seed layer

To prepare the seed layer, a polymeric SnO₂ resin was synthesized via polymeric precursor. A tin citrate was chosen as precursor in preparation of the cationic resin precursor to obtain the SnO₂, prepared according to the method proposed by Besso (see M. M. Besso, US Patent 3123120 (10/19/1965)). First, 50 cm³ of an ammonia solution was introduced dropwise at room temperature in 100cm³ of an aqueous solution containing citric acid (CA) and dichloride tin. When the pH of the solution reached a value between 2.5 and 3.0, precipitates of tin citrate were filtered and washed, respectively. The white precipitate was dried in air at 60 °C for 24h. The CA was dissolved with minimal water at ambient temperature and then added tin citrate and finally the ethyleneglicol. The molar ratio of CA: metal was 3: 1 and the amount of EG, as determined by mass ratio was 60:40.


The resin viscosity was adjusted by water evaporation until reach 12 cP (centipoise) using a rheometer (Brookfield, LVDV-III ULTRA). Afterwards, the solution was spin-coated onto SiO₂/Si (with Pt electrodes) substrate by using a speed of 10000 rpm for 60 s, followed by water evaporation at 100 °C for 30 min. A two-stage heat treatment was performed as follows: initial heating at 300 °C for 30 min with a heating rate of 1 °C.min⁻¹ in air atmosphere to pyrolyze the organic compounds followed by an annealing for 2 hours at 500 °C with a heating rate of 5 °C.min⁻¹ for crystallization process.

2. Atomic force microscopy analysis


Figure S1. Atomic force microscopy (AFM) images. (a) SnO₂ seed layer, (b) ZnO nanorods grown over a ZnO seed layer, and (c) ZnO nanorods grown over a SnO₂ seed layer exhibited in (a).

3. Field emission scanning electron microscopy analysis

Figure S2. Field emission scanning electron microscopy (FESEM) images of (a) ZnO nanorods grown on a ZnO thin film and (b) as-prepared ZnO powder obtained by the hydrothermal treatment.

4. X-ray photoelectron spectroscopy analysis

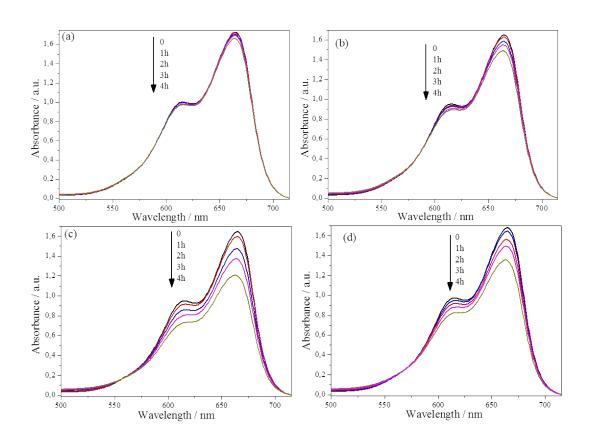


Figure S3. XPS spectra of the ZnO–ZnO sample. (a) Survey XPS scan spectrum, (b) Zn 2p, and (c) O 1s core levels.

Table S1. XPS results obtained from the deconvolution of the O 1s core levels.

Sample	Position (eV)	Area (%)	FWHM	Atomic conc. (%)
ZnO-ZnO	530.2	57409.4	1.1	45.9
	531.3	62560.4	2.6	50.0
	532.3	5105.6	1.3	4.1
ZnO-SnO ₂	530.1	55436.8	1.1	35.7
	531.3	83657.5	2.6	53.9
	532.1	16075.6	1.4	10.4

5. Photocatalytic experiments

Fig. S4 – UV-vis absorbance spectra of MB in different times of UV irradiation (a) pure and catalyzed by (b) SnO₂ seed layer, (c) ZnO-SnO₂ heterojunction and (d) ZnO-ZnO homojunction.

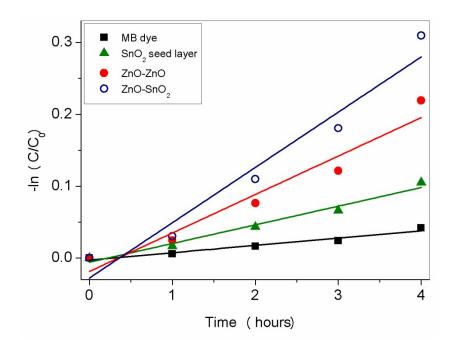


Fig. S5 – Pseudo first-order kinetic for MB photodegradation catalyzed by different samples.