Supporting information

Polyoxometalate-Based Supramolecular Architecture Constructed from Purely Inorganic 1D Chain and Metal-Organic Layers with Efficient Catalytic Activity

Chun-Jie Wang,^a Ting-Ting Wang,^a Qing Lan,^a Shuang Yao,^{*,b} Hong-Li Wu,^a Yang-Yang Zhou,^b Zhi-Ming Zhang^{*,a} En-Bo Wang^a

^aKey Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China. ^bCollege of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, PR. China.

Fig. S1 The structure of (4,4-bpy)₄[H₃PMo₁₂O₄₀] composed of one [PMo₁₂O₄₀] anion and four 4,4-bpy ligands.

Compound (4,4-bpy)] ₄ [H ₃ PMo ₁₂ O ₄₀]·5H ₂ O					
Formula	$C_{40}H_{42}Mo_{12}N_8O_{45}P$				
<i>T</i> (K)	296(2)				
$F_{ m w}$	2537.07				
Crystal system	monoclinic				
Space group	P2(1)/c				
a (Å)	18.7596(10)				
<i>b</i> (Å)	14.0406(8)				
<i>c</i> (Å)	26.5614(14)				
$\beta/^{\circ}$	105.4350(10)				
$V(Å^3)$	6743.8(6)				
Ζ	4.00				
μ (mm ⁻¹)	2.284				
λ (Å)	0.71073				
$R_1, wR_2 [I \ge 2\sigma(I)]$	0.0670, 0.1819				
R_1 , wR_2 (all data)	0.0908, 0.2000				
${}^{a}R_{1} = \Sigma F_{0} - F_{c} / \Sigma F_{0} ; \ wR_{2} = \Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}]^{1/2}$					

Table S1 The crystal data and structure refinement of $(4,4-bpy)]_4[H_3PMo_{12}O_{40}]\cdot 5H_2O$

Fig. S2 TG curve for compound 1. There is no weight loss up to 356 °C, suggesting no water molecules in the crystal structure, which is consistent the singly crystal X-ray diffraction analysis. Also, this result revealed that the inorganic-organic hybrids polyrotaxane structure exhibited commendably thermal stability. On further heating, there are three weight losses in the TG curve. The first weight loss (8.64%) from 356 to 400°C is attributed to the loss of four Htrz organic ligands (Calcd: 8.56%). The second weight loss (8.54%) and the third weight loss (1.14%) from 400 to 580 °C corresponds to the decomposition of two 4,4-bpy molecules (Calcd: 9.63%).

The procedure for oxidative desulfurization:

A mixture of catalyst (15 μ mol), thiophene sulfides (80 μ mol) and TBHP (240 μ mol) in 2 mL CH₂Cl₂ was stirred at 60 °C. The identity of the product was confirmed by FTIR and GC-MS, while the yield was achieved by HPLC analysis with a UV-Vis detector at $\lambda = 254$ nm using a Inertsil SIL-100A C18 column. All analyses were obtained with the mobile phase: CH₃CN : H₂O = 90 : 10 at an operating flow rate of 1 mL min⁻¹.

Fig. S3 IR spectrum of DBT (a), 4,6-DMDBT (b) and the products DBTO₂ and 4,6-DMDBTO₂ after the oxidation reaction. The appearance of characteristic frequencies at 1284 cm⁻¹ (v_{as} , SO₂) and 1164 cm⁻¹ (v_s , SO₂) confirms the occurrence of sulfones in the product.

Fig. S4. MS spectra for the oxidation product of DBT (a) and 4,6-DMDBT (b) at 120 min and 200min, respectively.

Fig. S5 The reaction progress of DBT (a) and 4,6-DMDBT (b) was monitored over time by HPLC chromatograms in the presence of compound **1**.

Fig. S6 Removal of DBT (a) and 4,6-DMDBT (b) versus reaction time with the compound **1** as catalyst (**•**); without catalyst (**•**). Reaction conditions: thiophene sulfides (80 μ mol), TBHP (240 μ mol), catalyst (1.5 μ mol), CH₂Cl₂ (2mL) and T = 60 °C.

Fig. S7 PXRD patterns of compound **1**: (a) calculated, (b) as-synthesized, (c) recovered after catalytic reaction of DBT.

Fig. S8 IR spectrum for as-synthesized catalyst (black line) and recovered catalyst after catalytic reaction (red line).

Fig. S9 The recycle experiments for catalytic removal of DBT with 1 as the catalyst.

Entry	Substrate	Catalyst	TBHP	t, min	Removal%	Reference
1	DBT	Compound 1	0.24mmol	120	99.8	This work
	(0.08 mmol)	(0.0015 mmol)				
2	DBT	$La_2MnV_{13}O_{38}$	2.0 mmol	180	99.5	Chem. Commun., S1
	(0.4 mmol)	(0.075 mmol)				2013, 49 , 3673
3	DBT	Co(BBPTZ) ₃][HPMo ₁₂ O ₄₀]	1.5 mmol	480	99.16	Chem. Eur. J., S2
	(0.4 mmol)	(0.003 mmol)				2015, 21 , 3778
4	DMDBT	Compound 1	0.24mmol	200	99.1	This work
	(0.08 mmol)	(0.0015 mmol)				
5	DMDBT	$La_2MnV_{13}O_{38}\\$	2.0 mmol	360	99.1	Chem. Commun., S1
	(0.4 mmol)	(0.075 mmol)				2013, 49 , 3673
6	DMDBT	Co(BBPTZ) ₃][HPMo ₁₂ O ₄₀]	1.5 mmol	480	99.14	Chem. Eur. J., S2
	(0.4 mmol)	(0.003 mmol)				2015, 21 , 3778

 Table S2 The desulfurization efficiency of polyoxometalates.

Fig. S10 The relationship of peak currents and scan rate, (a) 5, 10, 20, 50 mV s⁻¹ (b) 100, 125, 150, 200, 250, 300 mV s⁻¹.

Fig. S11 IR spectrum of compound **1**. There are four characteristic bands at 1045, 932, 876 and 814 cm⁻¹, which corresponded to the characteristic asymmetric vibrations of v(P-Oa), v(Mo-Od), v(Mo-Ob) and v(Mo-Oc). The other absorption bands at 1603, 1508, 1413, 1296, 1170, 762 and 658 cm⁻¹, are attributed to characteristic peaks of the organic ligands.

References

S1 D. Liu, Y. Lu, H. Q. Tan, W. L. Chen, Z. M. Zhang, Y. G. Li and E. B. Wang, *Chem. Commun.*, 2013, 49, 3673.

S2 X. L. Hao, Y. Y. Ma, H. Y. Zang, Y. H. Wang, Y. G. Li, E. B. Wang, Chem. Eur. J., 2015, 21, 3778.