Supporting Information Optical Approach to Resin Formulation for 3D Printed Microfluidics

S1 Results for 3D Printing Service Bureaus

We evaluated the minimum flow channel size that can be fabricated by commercial 3D printing service bureaus using a calibration test design. The design is included as an stl file as part of the ESI (3d_printing_bureau.stl) and is shown in Fig. S1. A series of channels with decreasing cross section size are included in the vertical wall. The size begins at 700 μ m × 700 μ m and decreases left-to-right in 50 μ m increments to 200 μ m × 200 μ m, followed by three additional channels, 150 μ m × 200 μ m, 100 μ m × 200 μ m, and 50 μ m × 200 μ m. All channels are 1.08 mm long so the results can be directly compared with results for the other resins reported in the paper.

Figure S1: Test design for 3D printing service bureaus.

Service bureau and process details are in Table S1 below. Two 3D printing fabrication methods are used, stereolithography (SL) and polyjet.

Vendor	Process	Comments
Fineline - Proto Labs	SL	WaterShed XC 11122 High-Resolution Stereolithography build in 0.002" layers
		with a substrate build style
Invent-A-Part	Polyjet	
Stratsys	Polyjet	PolyJet HD process
Stratsys	SL	Micro-High Definition Stereolithography (μ HDSL) process
3D Systems Quickparts	SL	Special request to not sand and bead blast part–just clean it

Fabrication results are shown in Table S2. Both Fineline and 3D Systems Quickparts are able to print channels down to 350 μ m × 350 μ m. The polyjet processes (Invent-A-Part and Stratasys) were less successful. By far the

Channel size	Fineline	Invent-A-Part	Stratasys Polyjet	$\begin{array}{c} \text{Stratasys} \\ \mu \text{HDSL} \end{array}$	3D Systems Quickparts
$\begin{array}{c} 700 \ \mu \mathrm{m} \\ \times \ 700 \\ \mu \mathrm{m} \end{array}$					
$ \begin{array}{ c c c c } 650 \ \mu \mathrm{m} \\ \times \ 650 \\ \mu \mathrm{m} \end{array} $		Ŧ	-		
$ \begin{bmatrix} 600 \ \mu m \\ \times \ 600 \\ \mu m \end{bmatrix} $		Sal			
$550 \ \mu \mathrm{m} \\ \times 550 \\ \mu \mathrm{m}$			C		
$ \begin{bmatrix} 500 \ \mu m \\ \times \ 500 \\ \mu m \end{bmatrix} $		2	0		
$\begin{array}{c} 450 \ \mu \mathrm{m} \\ \times \ 450 \\ \mu \mathrm{m} \end{array}$					
$\begin{array}{c} 400 \ \mu \mathrm{m} \\ \times \ 400 \\ \mu \mathrm{m} \end{array}$					
$\begin{array}{c} 350 \ \mu\mathrm{m} \\ \times \ 350 \\ \mu\mathrm{m} \end{array}$					0
$\begin{array}{c c} 300 \ \mu \mathrm{m} \\ \times \ 300 \\ \mu \mathrm{m} \end{array}$	0				
$\begin{array}{ c c c } 250 \ \mu m \\ \times \ 250 \\ \mu m \end{array}$	11 10	· ·		1 les	

Table S2: Microscope photographs of channels fabricated with commercial 3D printing service bureaus.

sharpest, smoothest, and most optically clear part is the one from Fineline, which also has a 500 $\mu\rm{m}$ \times 500 $\mu\rm{m}$ minimum dimension specification.

S2 Varying Channel Height and Build Layer Thickness for PEGDA Resins

		Sudan I concentration							
Channel	Layer	0.4%	0.2%	0.15%	0.1%				
	$10~\mu{ m m}$	16/16	0/24	0/30	0/12				
$100 \mu { m m}$	$25~\mu{ m m}$	17/17	0/14	0/24	0/11				
	$50 \ \mu m$	0/8	0/32	0/36	0/11				
10 10 150 μ m 25 50	$10 \ \mu { m m}$	16/16	0/14	0/20	0/12				
	$25~\mu{ m m}$	20/20	11/14	5/8	0/11				
	$50~\mu{ m m}$	0/8	2/14	15/20	0/11				
200µm	$10~\mu{ m m}$	16/16		12/24	0/12				
	$25~\mu{ m m}$	17/17		14/14	0/11				
	$50~\mu{ m m}$	0/8	10/14	23/23	0/11				
	$10~\mu{ m m}$	24/24	24/24	24/24	5/11				
$250 \mu m$	$25 \ \mu { m m}$	24/24	24/24	8/8	2/11				
	$50 \ \mu { m m}$	0/24	24/24	12/12	5/11				

Table S3: Results for different channel heights and layer thicknesses for PEGDA resins with varying concentrations of Sudan I. See paper text for details.

Sudan I concentration	0.4%			0.2%			0.15%			0.1%		
$\overline{z_l}$ (µm)	10	25	50	10	25	50	10	25	50	10	25	50
$\overline{\zeta_l}$	0.57	1.42	2.85	0.30	0.75	1.50	0.17	0.43	0.87	0.08	0.31	0.62
t_l (s)	0.8	2	8.5	0.45	0.71	1.5	0.47	0.61	1		0.52	0.75

Table S4: Normalized layer thicknesses, ζ_l , and exposure times, t_l , for the results in Table S3.