Electronic Supplementary Material (ESI) for RSC Advances

Luminescence of undoped and Eu^{3+} doped nanocrystalline SrWO₄ scheelite: Time resolved fluorescence complimented by DFT and Positron annihilation spectroscopic studies

Santosh K. Gupta^a*, K. Sudarshan^a, P.S. Ghosh^b, K. Sanyal ^c, A.P. Srivastava^b, A. Arya , P.K. Pujari^a, R.M. Kadam^a

- a. Radiochemistry Division, Bhabha Atomic Research Centre
- b. Materials Science Division, Bhabha Atomic Research Centre
- c. Fuel Chemistry Division, Bhabha Atomic Research Centre

Trombay, Mumbai-400085, India

*Corresponding Author- santufrnd@gmail.com, santoshg@barc.gov.in

Telephone- +91-22-25590636 Fax- +91-22-25505151

Figure S1: Crystal structure of Scheelite compound SrWO₄ along with SrO₈ and WO₄ polyhedra

Figure S2: (a) Unit cell of $SrWO_4$ (24 atoms) and W atom situated at position (0.5, 0.25, 0.375) in direct lattice co-ordinate was displaced to generate distortion model (marked by arrow) (b) Eu doped 2x2x1 supercell (96 atoms) of $SrWO_4$, where one Eu ion was substituted in place of Sr.

Figure S3: Emission spectra for Eu^{3+} doped SrWO₄ samples annealed at various temperature with λ_{ex} -395 nm.

Figure S4: Host emission in the emission spectra of SEWO samples annealed at different temperatures

Figure S5: PL decay curve for the ${}^{5}D_{0}$ level of Eu³⁺ in SrWO₄: Eu samples annealed at different temperatures

Figure S6: Time-resolved emission spectra of for short and long lived Eu³⁺ ion in SEWO-AP

Table T1: Comparison of PAW-PBE calculated and experimentally determined equilibrium lattice parameters, unit-cell volume, atomic positions, bond angles and electronic band gap of scheelite SrWO₄.

Property	Theory (this study)	Experiment [24]
Space Group	Tetragonal $I4_1/a$ (No. 88)	Tetragonal $I4_1/a$ (No. 88)
Lattice Parameters (Å)		
a	5.49488	5.421(5)
С	12.13425	11.952(9)
Cell Volume (Å ³)	366.38	351.27(6)
Atomic positions		
$\operatorname{Sr} 4(b)$	0.0 0.25 0.625	0.0 0.25 0.625
W 4(a)	0.0 0.25 0.125	0.0 0.25 0.125
O 16(f)	0.23699 0.11168 0.04290	0.2683(2) 0.1093(2) 0.0496(7)
Bond lengths (Å)		
W-O	1.80719	1.873(3)
Sr-O'	2.61093	2.487(8)
Sr-O"	2.65160	2.552(3)

Bond angle		
Sr-O-Sr	102.1023	106.37 (3)
Sr-O-W	120.0555	122.36 (3)
Sr-O"-W	134.9582	130.82 (4)
O'-W-O'	107.6918	103.38 (7)
O"-W-O"	113.0918	122.49 (6)
Band-gap (eV)	4.00	4.60 [24], 5.06 [50]

Table T2: CIE color coordinate of SrWO₄ crystallite obtained at different temperature

Sample	Symbol in	(x, y)
	CIE diagram	
SWO-AP	Α	(0.30, 0.36)
SWO-300	В	(0.29, 0.35)
SWO-500	C	(0.33, 0.37)
SWO-700	D	(0.24, 0.29)
SWO-900	E	(0.26, 0.31)

Table T3: Procedure data slicing in TRES

- Supposing there are two components A (short lived) and B (long lived), first we record the composite spectrum (A+B) with very short delay (just to avoid the lamp profile).
- ✤ Then give sufficient delay and record with identical integration times so that there is only B component in the spectrum (let's say B'; A is already decayed).
- But the intensity of the B' which we would get is not the same as the original B in the composite spectrum (A+B).
- So we multiply a suitable multiplying factor (exp factor, $e^{-t/\tau}$) so as to get the original intensity of B.
- ✤ Then if we subtract this B from the composite spectrum (A+B), it is possible to get the short lived component A.

One has to maintain however same gate widths while dealing with this type of procedure