Electronic supplementary information for

Size-controllable synthesis of amorphous GeO_x hollow spheres

and the lithium-storage electrochemical properties

Qiuyang Ma,^a Ming Ye,^a Peiyuan Zeng,^a Xiaoxiao Wang,^a Baoyou

Geng^{* a} and Zhen Fang,^{* a}

^a Key Laboratory of Functional Molecular Solids, Ministry of Education. Center for Nano Science and Technology. College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China; E-mail: fzfscn@mail.ahnu.edu.cn, bygeng@mail.ahnu.edu.cn.

Fig. S1. TGA curves of the amorphous T-GeO_x hollow sphere.

Fig. S2. Particle size distribution derived from TEM images.

	Max size (nm)	Min size (nm)	Average size (nm)
T-GeO _x	184	103	142
E-GeO _x	128	9	48

Table S1 Particle size of the obtained products

Fig. S3. Energy dispersive spectroscopy (EDS) mapping of the amorphous T-GeO_x hollow sphere.

Fig. S4. SEM images of (a,b) the amorphous E-GeO_x hollow spheres and (c, d) the TEM images of the amorphous E-GeO_x hollow spheres.

Fig. S5.FTIR spectrum of $GeO_x(NEt_3)_n$ solution.

Fig. S6. SEM image of (a) before and (b) after adding benzyl alcohol.