Triazine-Benzimidazole Conjugates: Synthesis, Spectroscopic and Molecular Modelling Studies for Interaction with calf thymus DNA

Prinka Singla, Vijay Luxami* and Kamaldeep Paul*

School of Chemistry and Biochemistry, Thapar University, Patiala-147004 INDIA

* To whom corresponding should be addressed. Tel.: +91-94656-70595; Fax: +91-175-236-

4498;

E-mail address: <u>kpaul@thapar.edu</u> (K. Paul), <u>vluxami@thapar.edu</u> (V. Luxami)

Sr. No.	Contents	Page No.
1.	Chemistry	S2-S7
2.	Material and methods	S7-S10
3.	¹ H NMR and ¹³ C NMR spectra	S11-S30
4.	Absorption and emission spectra of compounds with DNA	S31-S34
5.	Linear binding plots for binding constants	S34-S35
6.	Competitive binding studies	S35
7.	Ionic strength effect on the emission spectra of compound.DNA complexes	S36
8.	Effect of potassium iodide on the emission spectra of compound.DNA complexes	S36
9.	Docking studies	S37-

Table of contents

Experimental Section

Chemistry

All materials were obtained from commercial suppliers and used without further purification unless otherwise noted. Melting points were determined in open capillaries and were uncorrected. Reactions were monitored by thin-layer chromatography (TLC) carried out on silica gel plates (GF 254) using UV light as visualizing agents. Column chromatography was performed with silica gel 60-120. ¹H NMR and ¹³C NMR spectra were recorded on Jeol-400 (¹H, 400 MHz; ¹³C, 100 MHz) spectrometer at ambient temperature, using CDCl₃, DMSO- d_6 and trifluoroacetic acid (TFA) as solvents. Chemical shifts are reported in parts per million (ppm) with TMS as an internal reference and *J* values are given in Hz. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, bs = broad singlet, m = multiplet), coupling constants and number of protons. Mass spectrometric data were recorded at Waters Micromass Q-Tof Micro. Elemental analysis was done with Thermo Scientific (Flash 2000) analyzer. Hexane:ethyl acetate and chloroform:methanol were the adopted solvent systems.

Synthesis of (4,6-dichloro-[1,3,5]triazin-2-yl)-(4-fluoro-phenyl)-amine (1)¹ : To a stirred solution of cyanuric chloride (10 g, 0.054 mol) in anhydrous THF (150 mL), 4-fluoroaniline (7.21 g, 0.065 mol) was added at 0-5 $^{\circ}$ C. To this mixture, 10% NaHCO₃ was added and stirred at the same temperature for 6 h. The resulted reaction mixture was then poured into crushed ice, filtered, dried and column chromatographed on silica gel in ethylacetate:hexane (1:4) to afford the desired product (4,6-dichloro-[1,3,5]triazin-2-yl)-(4-fluoro-phenyl)-amine (1) as white solid; (11.93 g, 85%); mp: 222-224 °C.

Synthesis of 4-(1*H*-benzimidazol-2-yl)-phenylamine (2)² : A mixture of 4-aminobenzoic acid (5 g, 5.78 mmol) and *o*-phenylenediamine (3.9 g, 3.68 mmol) were stirred in polyphosphoric acid (12.5 gm) at 200 °C for 5 h. The reaction was monitored with TLC. The reaction mixture was cooled and poured into crushed ice. The precipitate was then stirred in cold water. Ammonium hydroxide solution was added until pH 7 was achieved. The resulting solid was filtered and washed several times with methanol and column chromatographed on silica gel in ethylacetate:hexane (4:1) to afford the desired product 4-(1*H*-benzimidazol-2-yl)-phenylamine (2) as white solid; yield: 82%; mp: 207-209 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.96 (d, 2H, *J* = 8.72 Hz, ArH), 7.55-7.51 (m, 2H, ArH), 7.16-7.14 (m, 2H, ArH), 6.75 (d, 2H, *J* = 8.24 Hz, ArH), 4.45 (bs, 2H, NH₂); ¹³C NMR (100 MHz, CDCl₃ + DMSO-*d*₆): δ = 152.2, 148.4, 127.5, 120.9, 118.6, 113.8 (ArC); MS (ESI), m/z: 209.2 (M⁺⁺1).

Synthesis of N-[4-(1*H*-benzimidazol-2-yl)-phenyl]-6-chloro-N'-(4-fluoro-phenyl)-[1,3,5]triazine-2,4-diamine (3): To a stirred solution of (4,6-dichloro-[1,3,5]triazin-2-yl)-(4-fluoro-phenyl)-amine (1) (10 g, 0.026 mol) in anhydrous THF (150 mL), 4-(1*H*-benzimidazol-2yl)-phenylamine (**2**) (8.06 g, 0.038 mol) was added at room temperature. To this mixture, 10% K₂CO₃ was added and stirred for 24 h. The resulted reaction mixture was then poured into crushed ice, filtered, dried and column chromatographed on silica gel using ethylacetate:hexane (4:1) to afford the product *N*-[4-(1*H*-benzimidazol-2-yl)-phenyl]-6-chloro-*N*⁻(4-fluoro-phenyl)-[1,3,5]triazine-2,4-diamine (**3**) as white solid; yield: 82%; mp: 249-251°C; ¹H NMR (400 MHz, CDCl₃ + DMSO-*d*₆): δ = 10.12 (bs, 1H, NH), 9.97 (bs, 1H, NH), 8.19 (d, 1H, *J* = 8.72 Hz, ArH), 8.14 (d, 1H, *J* = 7.76 Hz, ArH), 8.00 (d, 1H, *J* = 3.20 Hz, ArH), 7.86 (d, 2H, *J* = 7.80 Hz, ArH), 7.71-7.67 (m, 2H, ArH), 7.60 (s, 1H, ArH), 7.22-7.19 (m, 2H, ArH), 7.10-7.06 (m, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ = 169.4, 141.2, 134.9, 133.9, 133.6, 131.4, 129.1, 128.4, 126.3, 122.3, 119.8, 118.0, 110.3, 108.3 (ArC); MS (ESI), m/z: 431.8 (M⁺+1); Anal. Calcd for C₂₂H₁₅ClFN₇: C, 61.19; H, 3.50; N, 22.70, Found: C, 61.18; H, 3.47; N, 22.71.

General procedure for the synthesis of compounds 4-15: To a stirred solution of *N*-[4-(1*H*-benzimidazol-2-yl)-phenyl]-6-chloro-*N*'-(4-fluoro-phenyl)-[1,3,5]triazine-2,4-diamine (3) (0.200 g, 0.463 mmol) in 1,4-dioxane (20 mL), amines (0.556 mmol) and potassium carbonate (0.095g, 0.695 mmol) were added and heated at 110 °C for 6-8 hrs. Extracted the reaction mixture with chloroform, dried over Na₂SO₄, filtered and concentrated to get crude product which was then purified through column chromatography using chloroform:methanol (50:1) as eluents to give compounds 4-15.

N-[4-(1*H*-Benzimidazol-2-yl)-phenyl]-*N*'-(4-fluoro-phenyl)-6-morpholin-4-yl-[1,3,5]triazine-2,4-diamine (4): White solid; yield: 75%; mp: 248-250 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.00 (d, 2H, *J* = 4.72 Hz, ArH), 7.83 (s, 1H, NH), 7.72 (d, 2H, *J* = 8.24 Hz, ArH), 7.52-7.48 (m, 3H, ArH), 7.07 (t, 3H, *J* = 8.68 Hz, ArH), 6.96 (s, 1H, ArH), 6.80 (s, 1H, ArH), 3.82-3.76 (m, 4H, mor-CH₂), 3.70-3.69 (m, 4H, mor-CH₂); ¹³C NMR (100 MHz, CDCl₃ + DMSO-*d*₆): δ = 163.7, 159.1, 148.6, 144.5, 134.8, 131.5, 128.2, 125.2, 122.1, 119.6, 114.9, 114.6, 114.4, 113.3 (ArC), 65.9 (O-CH₂), 43.4 (N-CH₂); MS (ESI), m/z: 482.5 (M⁺+1); Anal. Calcd for C₂₆H₂₃FN₈O: C, 64.72; H, 4.80; N, 23.22, Found: C, 64.65; H, 4.77; N, 23.18.

N-[4-(1*H*-Benzimidazol-2-yl)-phenyl]-*N*'-(4-fluoro-phenyl)-6-piperidin-1-yl-[1,3,5]triazine-2,4-diamine (5): White solid; yield: 78%; mp: 252-254 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.00 (d, 2H, *J* = 8.28 Hz, ArH), 7.73 (bs, 1H, NH), 7.72 (d, 2H, *J* = 7.72 Hz, ArH), 7.53-7.49 (m, 3H, ArH), 7.05-7.00 (m, 4H, ArH), 6.85 (s, 1H, ArH), 3.79-3.78 (d, 4H, *J* = 5.04 Hz, N-CH₂), 1.55-1.51 (m, 6H, CH₂); ¹³C NMR (100 MHz, CDCl₃ + DMSO-*d*₆): δ = 147.6, 131.1, 128.0, 125.1, 123.3, 120.8, 116.0, 114.7, 114.5, 113.1 (ArC), 43.5 (N-CH₂), 24.8 (CH₂), 21.6 (CH₂); MS (ESI), m/z: 480.5 (M⁺+1); Anal. Calcd for C₂₇H₂₅FN₈: C, 67.48; H, 5.24; N, 23.32, Found: C, 67.50; H, 5.20; N, 23.39.

N-[4-(1*H*-Benzimidazol-2-yl)-phenyl]-*N*'-(4-fluoro-phenyl)-6-pyrrolidin-1-yl-[1,3,5]triazine-2,4-diamine (6): White solid; yield: 72%; mp: 242-244 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, 1H, *J* = 8.68 Hz, ArH), 7.70 (d, 2H, *J* = 8.72 Hz, ArH), 7.59-7.52 (m, 4H, ArH), 7.25-7.22 (m, 1H, ArH), 7.10 (bs, 1H, NH), 7.02-6.97 (m, 4H, ArH), 3.59-3.57 (m, 4H, N-CH₂), 1.961.95 (m, 4H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 163.9, 163.6, 152.4, 143.0, 135.9, 135.5, 134.2, 129.1, 128.0, 126.2, 121.3, 115.4, 115.2, 109.1 (ArC), 47.2 (N-CH₂), 25.3 (CH₂); MS (ESI), m/z: 466.5 (M⁺+1); Anal. Calcd for C₂₆H₂₃FN₈: C, 66.94; H, 4.97; N, 24.02, Found: C, 66.85; H, 4.93; N, 24.15.

N-[4-(1*H*-Benzimidazol-2-yl)-phenyl]-*N*'-(4-fluoro-phenyl)-6-(4-methyl-piperazin-1-yl)-[1,3,5]triazine-2,4-diamine (7): White solid; yield: 77%; mp: 268-270 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, 2H, *J* = 8.72 Hz, ArH), 7.71 (bs, 1H, NH), 7.63 (d, 2H, *J* = 7.76 Hz, ArH), 7.48-7.45 (m, 2H, ArH), 7.25-7.23 (m, 3H, ArH), 7.13 (s, 1H, ArH), 7.02 (t, 2H, *J* = 8.24 Hz, ArH), 3.82-3.80 (m, 4H, N-CH₂), 2.43-2.41 (m, 4H, N-CH₂), 2.32 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 164.9, 164.3, 151.8, 138.6, 138.5, 135.7, 135.0, 134.2, 129.1, 127.9, 126.2, 126.0, 122.1, 118.9, 116.4, 116.0, 115.5, 115.2 (ArC), 54.7 (N-CH₂), 43.1 (N-CH₂) 14.0 (N-CH₃); MS (ESI), m/z: 495.5 (M⁺+1); Anal. Calcd for C₂₇H₂₆FN₉: C, 65.44; H, 5.29; N, 25.44, Found: C, 65.35; H, 5.25; N, 25.50.

N-(2-Amino-ethyl)-*N*'-[4-(1*H*-benzimidazol-2-yl)-phenyl]-*N*''-(4-fluoro-phenyl)-

[1,3,5]triazine-2,4,6-triamine (8): White solid; yield: 72%; mp: 273-275 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.02$ (bs, 1H, NH), 7.50-7.48 (m, 3H, ArH), 7.31 (d, 3H, J = 7.32 Hz, ArH), 7.11 (d, 2H, J = 8.24 Hz, ArH), 7.06 (d, 2H, J = 7.32 Hz, ArH), 6.95 (d, 2H, J = 7.36 Hz, ArH), 3.50-3.48 (m, 2H, N-CH₂), 2.93 (t, 2H, J = 5.48 Hz, N-CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.4$, 152.5, 142.9, 135.9, 135.8, 129.1, 128.0, 126.3, 115.4, 115.2, 109.1 (ArC), 43.5 (N-CH₂), 41.4 (N-CH₂); MS (ESI), m/z: 455.4 (M⁺+1); Anal. Calcd for C₂₄H₂₂FN₉: C, 63.28; H, 4.87; N, 27.68, Found: C, 63.35; H, 4.80; N, 27.60.

2-[4-[4-(1*H***-Benzimidazol-2-yl)-phenylamino]-6-(4-fluoro-phenylamino)-[1,3,5]triazin-2ylamino]-ethanol (9):** White solid; yield: 69%; mp: 261-263 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.02 (bs, 1H, NH), 7.44-7.42 (m, 2H, ArH), 7.29-7.26 (m, 5H, ArH), 7.03-6.98 (m, 3H, ArH), 6.90-6.84 (m, 2H, ArH), 3.81-3.79 (m, 2H, O-CH₂), 3.57-3.53 (m, 2H, N-CH₂), 1.84 (bs, 1H, OH); ¹³C NMR (100 MHz, CDCl₃): δ = 166.5, 164.1, 152.5, 142.6, 135.7, 129.1, 128.0, 126.3, 122.0, 115.4, 115.1, 109.1 (ArC), 47.2 (O-CH₂), 43.7 (N-CH₂); MS (ESI), m/z: 456.4 (M⁺+1); Anal. Calcd for C₂₄H₂₁FN₈O: C, 63.15; H, 4.64; N, 24.55, Found: C, 63.05; H, 4.60; N, 24.65.

N-[4-(1*H*-Benzimidazol-2-yl)-phenyl]-*N*'-(4-fluoro-phenyl)-*N*''-(2-morpholin-4-yl-ethyl)-[1,3,5]triazine-2,4,6-triamine (10): White solid; yield: 74%; mp: 278-280 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.94-7.90 (m, 2H, ArH), 7.61 (d, 1H, *J* = 9.16 Hz, ArH), 7.55-7.51 (m, 3H, ArH, NH), 7.50-7.43 (m, 3H, ArH), 7.23-7.21 (m, 1H, ArH), 7.02 (d, 1H, *J* = 6.40 Hz, ArH), 6.99 (d, 1H, *J* = 2.28 Hz, ArH), 6.97 (d, 1H, *J* = 1.84 Hz, ArH), 3.71-3.65 (m, 4H, O-CH₂), 3.53-3.46 (m, 2H, N-CH₂), 2.56-2.49 (m, 2H, N-CH₂), 2.46-2.42 (m, 4H, N-CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 166.0, 164.6, 152.5, 142.9, 135.8, 129.1, 128.0, 126.3, 122.1, 121.7, 115.5, 115.2, 109.1 (ArC), 66.9 (O-CH₂), 53.4 (N-CH₂), 47.2 (N-CH₂), 37.1 (N-CH₂); MS (ESI), m/z: 525.5 (M⁺+1); Anal. Calcd for C₂₈H₂₈FN₉O: C, 63.99; H, 5.37; N, 23.98, Found: C, 64.10; H, 5.33; N, 24.05. **2-{4-[4-[4-(1***H***-Benzimidazol-2-yl)-phenylamino]-6-(4-fluoro-phenylamino)-[1,3,5]triazin-2-yl]-piperazin-1-yl}-ethanol (11):** White solid; yield: 73%; mp: 274-276 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, 1H, *J* = 8.28 Hz, ArH), 7.61 (d, 2H, *J* = 8.28 Hz, ArH), 7.50-7.44 (m, 3H, ArH), 7.26-7.24 (m, 3H, ArH), 7.03-6.97 (m, 3H, ArH), 6.81 (bs, 1H, NH), 3.92 (t, 2H, *J* = 0.44 Hz, O-CH₂), 3.83-3.79 (m, 4H, N-CH₂), 3.67 (t, 2H, *J* = 4.12 Hz, N-CH₂), 2.55-2.53 (m, 4H, N-CH₂), 1.83 (bs, 1H, OH); ¹³C NMR (100 MHz, CDCl₃): δ = 152.4, 143.0, 135.9, 134.3, 131.6, 129.0, 128.0, 126.2, 116.2, 110.7, 109.1, 109.0 (ArC), 66.9 (O-CH₂), 47.1 (N-CH₂), 43.7 (N-CH₂), 43.6 (N-CH₂); MS (ESI), m/z: 525.5 (M⁺+1); Anal. Calcd for C₂₈H₂₈FN₉O: C, 63.99; H, 5.37; N, 23.98, Found: C, 64.11; H, 5.29; N, 23.91.

N-[4-(1*H*-Benzimidazol-2-yl)-phenyl]-*N*'-benzyl-*N*''-(4-fluoro-phenyl)-[1,3,5]triazine-2,4,6-triamine (12): White solid; yield: 78%; mp: 247-249 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.09$ (d, 1H, *J* = 6.88 Hz, ArH), 8.81 (d, 2H, *J* = 7.80 Hz, ArH), 8.52 (s, 1H, ArH), 8.45 (bs, 1H, NH), 8.06-8.04 (m, 3H, ArH), 7.99 (d, 1H, *J* = 7.76 Hz, ArH), 7.91 (d, 3H, *J* = 8.24 Hz, ArH), 7.86 (d, 1H, *J* = 7.76 Hz, ArH), 7.74 (d, 1H, *J* = 6.40 Hz, ArH), 7.35-7.28 (m, 3H, ArH), 7.16 (t, 1H, *J* = 7.36 Hz, ArH), 5.98 (s, 2H, N-CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 168.7, 152.6, 142.1, 135.6, 133.4, 133.1, 132.7, 132.5, 129.1, 128.2, 128.1, 126.3, 116.9, 110.8, 109.5 (ArC), 47.3 (N-CH₂); MS (ESI), m/z: 502.5 (M⁺+1); Anal. Calcd for C₂₉H₂₃FN₈: C, 69.31; H, 4.61; N, 22.30, Found: C, 69.22; H, 4.58; N, 22.39.

N-Allyl-N'-[4-(1H-benzimidazol-2-yl)-phenyl]-N''-(4-fluoro-phenyl)-[1,3,5]triazine-2,4,6-

triamine (13): White solid; yield: 70%; mp: 288-290 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.04$ (d, 1H, J = 7.36 Hz, ArH), 8.45 (m, 1H, ArH), 7.97 (d, 2H, J = 7.80 Hz, ArH), 7.83 (d, 1H, J = 7.76 Hz, ArH), 7.73 (d, 2H, J = 5.96 Hz, ArH), 7.43-7.39 (m, 2H, ArH), 7.29-7.25 (m, 2H, ArH, NH), 7.15-7.11 (m, 2H, ArH), 6.20-6.10 (m, 1H, allylic-CH), 5.40-5.29 (m, 4H, allylic-CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.5$, 144.5, 143.8, 142.7, 133.9, 130.8, 129.6, 129.5, 128.4, 122.7, 122.0, 120.6, 120.1, 110.0, 109.9, 108.8 (ArC), 54.6 (N-CH₂); MS (ESI), m/z: 452.4 (M⁺+1); Anal. Calcd for C₂₅H₂₁FN₈: C, 66.36; H, 4.68; N, 24.76, Found: C, 66.48; H, 4.64; N, 24.88.

N-[4-(1*H*-Benzimidazol-2-yl)-phenyl]-*N*'-cyclohexyl-*N*''-(4-fluoro-phenyl)-[1,3,5]triazine-

2,4,6-triamine (14): White solid; yield: 72%; mp: 281-283 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, 2H, *J* = 7.60 Hz, ArH), 7.73-7.63 (m, 3H, ArH), 7.52-7.47 (m, 2H, ArH), 7.24-7.16 (m, 3H, ArH), 7.13 (bs, 1H, NH), 7.01 (t, 2H, *J* = 8.04 Hz, ArH), 5.05 (bs, 1H, NH), 3.81 (s, 1H, N-CH), 2.04-2.02 (m, 2H, CH₂), 1.76-1.63 (m, 4H, CH₂), 1.38-1.21 (m, 4H, CH₂); ¹³C NMR (100 MHz, CDCl₃ + TFA): δ = 152.5, 147.6, 141.5, 130.8, 128.3, 126.7, 123.5, 123.4, 121.3, 116.7, 116.6, 115.8, 115.5, 113.6 (ArC), 51.7 (CH), 31.9 (CH₂), 25.0 (CH₂), 24.7 (CH₂); MS (ESI), m/z: 494.5 (M⁺+1); Anal. Calcd for C₂₈H₂₇FN₈: C, 68.00; H, 5.50; N, 22.66, Found: C, 68.19; H, 5.46; N, 22.75.

N-[4-(1*H*-Benzimidazol-2-yl)-phenyl]-*N*'-(4-fluoro-phenyl)-6-hydrazino-[1,3,5]triazine-2,4diamine (15): White solid; yield: 66%; mp: 289-291 °C; ¹H NMR (400 MHz, CDCl₃ + DMSO d_6): $\delta = 8.30$ (s, 1H, NH), 8.25-8.12 (m, 3H, ArH), 8.00-7.85 (m, 3H, ArH), 7.76-7.59 (m, 3H, ArH), 7.35-7.19 (m, 3H, ArH); ¹³C NMR (100 MHz, CDCl₃ + DMSO- d_6): $\delta = 151.5$, 138.4, 134.9, 132.9, 128.3, 127.2, 126.5, 125.9, 122.4, 117.6, 116.1, 114.7, 114.5 (ArC); MS (ESI), m/z: 427.4 (M⁺+1); Anal. Calcd for C₂₂H₁₈FN₉: C, 61.82; H, 4.24; N, 29.49, Found: C, 61.80; H, 4.21; N, 29.40.

General procedure for the synthesis of compounds 16-21: To the stirred solution of *N*-[4-(1*H*-benzimidazol-2-yl)-phenyl]-6-chloro-*N*'-(4-fluoro-phenyl)-[1,3,5]triazine-2,4-diamine (3) (0.200 g, 0.463 mmol) in 1,4-dioxane (20 mL), arylboronic acids (0.556 mmol), $Pd(PPh_3)_4$ (10 mol%) and potassium carbonate (0.095g, 0.695 mmol) were added and refluxed for 8-10 hrs in an inert atmosphere. After the completion of reaction, extracted the reaction mixture with chloroform, dried over Na₂SO₄, filtered and concentrated to get crude product which was purified through column chromatography using chloroform:methanol (50:1) as eluents to give compounds 16-21.

N-[4-(1H-Benzimidazol-2-yl)-phenyl]-N'-(4-fluoro-phenyl)-6-phenyl-[1,3,5]triazine-2,4-

diamine (16): White solid; yield: 69%; mp: 246-248 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.92 (d, 2H, *J* = 6.84 Hz, ArH), 7.69-7.60 (m, 3H, ArH, NH), 7.52 (d, 3H, *J* = 5.96 Hz, ArH), 7.45 (d, 4H, *J* = 4.60 Hz, ArH), 7.21-7.20 (m, 3H, ArH), 6.96 (t, 3H, *J* = 8.24 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃): δ = 164.5, 160.3, 157.8, 152.2, 139.2, 135.8, 135.7, 134.4, 129.0, 127.9, 126.3, 122.9, 122.8, 119.0, 116.7, 115.5, 115.3 (ArC); EIMS, m/z: 473.5 (M⁺+1); Anal. Calcd for C₂₈H₂₀FN₇: C, 71.02; H, 4.26; N, 20.71, Found: C, 71.23; H, 4.22; N, 20.79.

N-[4-(1H-Benzimidazol-2-yl)-phenyl]-6-(4-chloro-phenyl)-N'-(4-fluoro-phenyl)-

[1,3,5]triazine-2,4-diamine (17): White solid; yield: 68%; mp: 262-264 °C; ¹H NMR (400 MHz, CDCl₃ + DMSO- d_6): $\delta = 8.69$ (d, 2H, J = 7.76 Hz, ArH), 8.10-8.05 (m, 4H, ArH), 7.84-7.77 (m, 2H, ArH), 7.69-7.63 (m, 4H, ArH), 7.56 (d, 1H, J = 7.36 Hz, ArH), 7.50 (d, 1H, J = 6.88 Hz, ArH), 7.28 (t, 2H, J = 6.88 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.0$, 165.1, 164.4, 152.0, 138.8, 137.7, 135.8, 135.4, 134.0, 132.2, 132.1, 132.0, 129.7, 129.2, 128.6, 128.5, 128.0, 125.8, 119.2, 115.7, 101.5 (ArC); EIMS, m/z: 507.9 (M⁺+1); Anal. Calcd for C₂₈H₁₉ClFN₇: C, 66.21; H, 3.77; N, 19.30, Found: C, 66.11; H, 3.74; N, 19.38.

N-[4-(1*H*-Benzimidazol-2-yl)-phenyl]-*N*'-(4-fluoro-phenyl)-6-thiophen-2-yl-[1,3,5]triazine-2,4-diamine (18): White solid; yield: 67%; mp: 274-276 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, 3H, *J* = 8.72 Hz, ArH), 7.73-7.62 (m, 4H, ArH), 7.54-7.50 (m, 3H, ArH), 7.35 (d, 2H, *J* = 3.6 Hz, ArH), 7.06 (t, 3H, *J* = 9.16 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃): δ = 170.9, 165.1, 164.5, 152.0, 138.7, 136.8, 135.8, 134.1, 131.6, 129.2, 128.3, 128.0, 125.9, 119.1, 115.6, 101.4 (ArC); MS (ESI), m/z: 479.5 (M⁺+1); Anal. Calcd for C₂₆H₁₈FN₇S: C, 65.12; H, 3.78; N, 20.45; S, 6.69, Found: C, 65.29; H, 3.75; N, 20.42; S, 6.75. *N*-[4-(1*H*-Benzimidazol-2-yl)-phenyl]-*N*'-(4-fluoro-phenyl)-6-furan-2-yl-[1,3,5]triazine-2,4diamine (19): White solid; yield: 71%; mp: 248-250 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.95 (d, 2H, *J* = 8.24 Hz, ArH), 7.58-7.52 (m, 4H, ArH), 7.48-7.45 (m, 3H, ArH), 7.24-7.22 (m, 4H, ArH), 7.02-6.98 (m, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ = 170.6, 164.7, 152.2, 139.5, 135.9, 134.3, 132.5, 130.6, 129.1, 126.2, 122.8, 119.2, 115.7, 115.5, 102.2 (ArC); MS (ESI), m/z: 463.4 (M⁺+1); Anal. Calcd for C₂₆H₁₈FN₇O: C, 67.38; H, 3.91; N, 21.16, Found: C, 67.46; H, 3.88; N, 21.29.

N-[4-(1H-Benzimidazol-2-yl)-phenyl]-N'-(4-fluoro-phenyl)-6-(2-methoxy-phenyl)-

[1,3,5]triazine-2,4-diamine (20): White solid; yield: 65%; mp: 288-290 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, 3H, J = 8.72 Hz, ArH), 7.81 (s, 1H, ArH), 7.67 (d, 3H, J = 8.00 Hz, ArH), 7.52-7.50 (m, 5H, ArH, NH), 7.27 (d, 2H, J = 2.76 Hz, ArH), 7.06 (t, 3H, J = 8.24 Hz, ArH), 3.96 (s, 3H, OCH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 152.7$, 144.8, 139.2, 135.5, 132.6, 132.0, 129.2, 129.0, 127.9, 127.4, 126.7, 126.2, 122.5, 121.5, 117.0, 113.9, 111.9, 109.4 (ArC), 55.3 (OCH₃); MS (ESI), m/z: 503.5 (M⁺+1); Anal. Calcd for C₂₉H₂₂FN₇O: C, 69.17; H, 4.40; N, 19.47, Found: C, 69.03; H, 4.33; N, 19.41.

N-[4-(1H-Benzimidazol-2-yl)-phenyl]-N'-(4-fluoro-phenyl)-6-(4-methoxy-phenyl)-

[1,3,5]triazine-2,4-diamine (21): White solid; yield: 70%; mp: 266-268 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, 3H, *J* = 8.72 Hz, ArH), 7.66 (d, 3H, *J* = 8.24 Hz, ArH), 7.52-7.50 (m, 3H, ArH), 7.32 (bs, 1H, NH), 7.28-7.27 (m, 3H, ArH), 7.25 (s. 1H, ArH), 7.05 (t, 3H, *J* = 8.72 Hz, ArH), 3.96 (s, 3H, OCH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 163.2, 159.7, 157.0, 147.2, 136.4, 132.2, 130.2, 128.5, 127.6, 126.8, 122.4, 116.6, 114.0, 113.6, (ArC), 55.4 (OCH₃); MS (ESI), m/z: 503.5 (M⁺+1); Anal. Calcd for C₂₉H₂₂FN₇O: C, 69.17; H, 4.40; N, 19.47, Found: C, 69.05; H, 4.37; N, 19.40.

Materials and methods

The stock solution of ct-DNA (Sigma Chemical Co., USA) was prepared by dissolving an appropriate amount of ct-DNA in Millipore water. The purity of ct-DNA was verified by monitoring the ratio of the absorbance at 260 and 280 nm, and the ratio of A_{260}/A_{280} was 1.82, indicating that ct-DNA was sufficiently free of protein contamination. The concentration of ct-DNA in terms of the nucleotide phosphate (i.e. nucleotide) was determined to be 2.56×10^{-3} molL⁻¹ by UV-Vis absorption at 260 nm using a molar absorption coefficient of $\varepsilon_{260} = 6600$ L mol⁻¹cm⁻¹(expressed as the molarity of phosphate groups). All stock solutions were diluted to the required concentrations with phosphate buffer (pH 7.4). All other reagents were of analytical reagent grade, and ultrapure water was used throughout the experiment. All stock solutions were stored at 0–4 °C.

UV-Vis absorption spectra

All the spectra were recorded at ambient temperature (300 K). UV-Vis spectra were recorded on Shimadzu-2400 PC spectrometer with 1 cm cuvette. Any background buffer signal was electronically subtracted. Absorption titrations were performed with constant ligand concentration of 20 μ M and increasing ct-DNA concentration (up to 15 μ M). The control experiment was done by adding equal volumes of buffer solution instead of DNA solution to the same concentration of compound. The control experiment shows no significant change in the absorption spectra of the compound.

Fluorescence spectra

Emission spectra were recorded with Varian Cary Eclipse fluorescence spectrometer. Fluorescence titration spectra were obtained with a constant ligand concentration (20 μ M) and increasing amount of ct-DNA (up to 17 μ M).

Binding constants

Binding constant K for the ligand–DNA complex was estimated from absorption and fluorescence titration data using the Benesi–Hildebrand equation-1 that suggested strong interactions with ct-DNA.

$$1/(A_{\rm f} - A_{\rm obs}) = 1/(A_{\rm f} - A_{\rm fc}) + \{1/[K(A_{\rm f} - A_{\rm fc})]\}$$
[ligand] ------ 1

where K is the binding constant, A_f is the absorbance of the free host, A_{obs} is the absorbance observed, and A_{fc} is the absorbance at saturation.

K was determined from the ratio of intercept to slope obtained from the linear fit of the plot of $1/(A_f - A_{obs})$ versus 1/[DNA], respectively. The control experiment was done by adding equal volumes of buffer solution instead of DNA solution to the same concentration of the compound. No significant change in the emission spectra was observed in control experiment.

DNA melting studies

Thermal melting curves were measured with Shimadzu-2400 PC spectrometer equipped with Peltier temperature controller system (± 0.1 °C). ct-DNA was treated with compounds (ratio of DNA to compound = 1:1) and kept at 25 °C for 5 minutes. All the solutions were degassed before the experiment. The absorbance of ct-DNA (50 μ M) in buffer (pH 7.4) was measured at 260 nm. The samples were heated from 20 °C to 100 °C and the absorbance was measured after attaining thermal equilibrium at a particular temperature with an interval of 1 °C. The absorbance of the compound was subtracted at each point. T_m was determined from the 1st derivative of the absorbance vs. temperature curve.

Competitive binding study of compounds 7, 9-11, 16 and 21 with ct-DNA in the presence of ethidium bromide and Hoechst 33258

Competitive binding of ligands with DNA in the presence of intercalator ethidium bromide and classical minor groove binder Hoechst 33258 were also studied. Ethidium bromide and Hoechst 33258 (Sigma) were dissolved in Milli-Q water to prepare a stock solution with 1 mM strength and diluted immediately before use. Fluorescence spectra were taken in the presence of ethidium bromide and Hoechst 33258 (10 μ M) while increasing the amount of ct-DNA (0 to 20 μ M) and using an excitation wavelength of 480 nm and 353 nm. Compounds were added with an increasing concentration of 2 μ M (up to 30 μ M), mixed thoroughly after each addition and the emission spectrum was recorded with $\lambda_{ex} = 480$ nm and $\lambda_{ex} = 353$ nm.

Viscosity measurements

Viscosity measurements were conducted on a viscometer, immersed in a thermostatic water-bath maintained at a constant temperature of 25 ± 0.1 ^oC. The experiments were carried out by adding different concentration of ligand into the viscometer while keeping the ct-DNA concentration constant. The flow time (t) of the solution through the capillary was measured with a digital stopwatch, and the average flow time of five parallel measurements was used to evaluate the relative viscosity of the samples. The data were presented as the relative viscosity of ct-DNA (η/η_0)^{1/3} versus LDR (ligand-DNA ratio), where η and η_0 represent the viscosity of ct-DNA in the presence and absence of ligand, respectively.

Ionic strength and Iodide quenching effect

Effects of ionic strength and iodide on the interaction between compounds and ct-DNA were studied by varying the concentration of NaCl and KI between 0 and 10 μ M in a total volume of 3 ml containing compounds 7, 9-11, 16 and 21 (20 μ M). In another set, a similar experiment was done in the presence of 15 μ M of ct-DNA. It was performed in the presence and absence of ct-DNA.

Docking studies

Compounds were built using the builder tool kit of the software package Argus Lab 4.0.1.23 and energy minimized with semi-empirical quantum mechanical method PM3. Crystal coordinates of DNA (PDB ID 1BNA) was downloaded from protein data bank and in the molecule tree view of the software, the monomeric structures of the crystal co-ordinate was selected and the active site was defined as 15 Å around the ligand. Validation of the docking programme was checked by docking the known inhibitors of the respective enzymes in their binding sites. The molecule to be docked in the active site of the enzyme was pasted in the work space carrying the structure of the

enzyme. The docking programme implements an efficient grid based docking algorithm which approximates an exhaustive search within the free volume of the S19 binding site cavity. The conformational space was explored by the geometry optimization of the flexible ligand (rings were treated as rigid) in combination with the incremental construction of the ligand torsions. Thus, docking occurs between the flexible ligand parts of the compound and enzyme. The docking was repeated several times (approx. 10,000 iterations) until no change in the position of the ligand and a constant value of the binding energy was observed. The ligand orientation was determined by a shape scoring function based on Ascore and the final positions were ranked by lowest interaction energy values. H-bond interactions between the respective compound and enzyme were explored. During computational docking, a pose is typically generated, scored and compared to the previous pose(s). The current pose is then accepted or rejected on the basis of the score for that pose.

¹H and ¹³C NMR spectra of compounds

Figure S2. ¹³C NMR spectrum of compound 2 (CDCl₃ + DMSO- d_6).

Figure S3. ¹H NMR spectrum of compound 3 (CDCl₃ + DMSO- d_6).

Figure S4. ¹³C NMR spectrum of compound 3 (CDCl₃).

Figure S12. ¹³C NMR spectrum of compound 7 (CDCl₃).

Figure S14. ¹³C NMR spectrum of compound 8 (CDCl₃).

Figure S16. ¹³C NMR spectrum of compound 9 (CDCl₃).

Figure S17. ¹H NMR spectrum of compound 10 (CDCl₃).

Figure S18. ¹³C NMR spectrum of compound 10 (CDCl₃).

Figure S19. ¹H NMR spectrum of compound 11 (CDCl₃).

Figure S20. ¹³C NMR spectrum of compound 11 (CDCl₃).

Figure S22. ¹³C NMR spectrum of compound 12 (CDCl₃).

Figure S24. ¹³C NMR spectrum of compound 13 (CDCl₃).

Figure S25. ¹H NMR spectrum of compound 14 (CDCl₃).

Figure S26. ¹³C NMR spectrum of compound 14 (CDCl₃ + TFA).

Figure S27. ¹H NMR spectrum of compound **15** (CDCl₃ + DMSO-*d*₆).

Figure S28. ¹³C NMR spectrum of compound **15** (CDCl₃ + DMSO- d_6).

Figure S29. ¹H NMR spectrum of compound 16 (CDCl₃).

Figure S30. ¹³C NMR spectrum of compound 16 (CDCl₃).

Figure S31. ¹H NMR spectrum of compound **17** (CDCl₃ + DMSO-*d*₆).

Figure S32. ¹³C NMR spectrum of compound 17 (CDCl₃).

Figure S33. ¹H NMR spectrum of compound 18 (CDCl₃).

Figure S34. ¹³C NMR spectrum of compound 18 (CDCl₃).

Figure S36. ¹³C NMR spectrum of compound 19 (CDCl₃).

Figure S38. ¹³C NMR spectrum of compound 20 (CDCl₃).

Absorption and emission spectra of compounds 4-6, 8, 12, 14-15, 18 and 20.

Figure S41. (a) Absorption (b) emission spectra of compound 4 (20 μ M) with increasing concentration of ct-DNA in phosphate buffer.

Figure S42. (a) Absorption (b) emission spectra of compound 5 (20 μ M) with increasing concentration of ct-DNA in phosphate buffer.

Figure S43. (a) Absorption (b) emission spectra of compound 6 (20 μ M) with increasing concentration of ct-DNA in phosphate buffer.

Figure S44. (a) Absorption (b) emission spectra of compound 8 (20 μ M) with increasing concentration of ct-DNA in phosphate buffer.

Figure S45. (a) Absorption (b) emission spectra of compound 12 (20 μ M) with increasing concentration of ct-DNA in phosphate buffer.

Figure S46. (a) Absorption (b) emission spectra of compound 14 (20 μ M) with increasing concentration of ct-DNA in phosphate buffer.

Figure S47. (a) Absorption (b) emission spectra of compound 15 (20 μ M) with increasing concentration of ct-DNA in phosphate buffer.

Figure S48. (a) Absorption (b) emission spectra of compound 18 (20 μ M) with increasing concentration of ct-DNA in phosphate buffer.

Figure S49. (a) Absorption (b) emission spectra of compound 20 (20 μ M) with increasing concentration of ct-DNA in phosphate buffer.

Inner Filter Effect³

The inner-filter effect refers to the absorbance (or optical dispersion) of light at the excitation or emission wavelength by the compounds present in the solution. Usually, the optics of commercial fluorimeter focuses the exciting light and collects the emission from the centre of the cuvette. Therefore, when absorption at the excitation wavelength is significant, less light reaches the centre of the sample and thus the fluorescence of the fluorophore is reduced, while absorption at the emission wavelength reduces the emitted light that reaches the detector. This is a problem whenever the ligand used in a titration absorbs at the excitation and/or emission wavelengths. Also any dilution of the fluorophore upon ligand titration needs to be corrected. Due to the non-linear nature of the inner-filter effect this may require special attention. If the geometry of the instrument is such that the collected intensity comes exactly from the centre of the cuvette, the inner filter effect can be estimated from:

$$F_{corr} = F_{obs} \times 10^{\left[\frac{A_{em} + A_{ex}}{2}\right]}$$

Where F_{corr} and F_{obs} are corrected and uncorrected fluorescence intensities, A_{ex} is absorbance of solution at excitation wavelength and A_{em} is absorbance of solution at emission wavelength.

Compound No.	Correction factor	Compound No.	Correction factor
4	1.4588	11	1.5541
5	1.3335	12	1.5153
6	1.3630	14	1.3677
7	1.1468	15	1.3899
8	1.2119	16	1.1494
9	1.4910	18	1.3598
10	1.4471	21	1.2373

Table S1 Correction factors of compounds for inner filter effect

Figure S50. Plot of $1/(A_f - A_0)$ vs. 1/[DNA] for absorption spectra of compounds 7, 9-11, 16 and 21 in the presence of ct-DNA.

Figure S51. Plot of $1/(F_f - F_0)$ vs. 1/[DNA] for emission spectra of compounds 7, 9-11, 16 and 21 in the presence of ct-DNA.

Competitive binding study

Figure S52. Gradual addition of compounds 7, 9-11, 16 and 21 shows no significant change in the fluorescence intensity of ethidium bromide bound ct-DNA.

Figure S53. Fluorescence quenching plots of (a) compound 7; (b) compound 9; (c) compound 10; (d) compound 11; (e) compound 16; (f) compound 21 and compound.DNA complexes by NaCl.

Effect of iodide on fluorescence quenching of compound.DNA complexes (7, 9-11, 16 and 21).

Figure S54. Fluorescence quenching plots of (a) compound 7; (b) compound 9; (c) compound 10; (d) compound 11; (e) compound 16; (f) compound 21 and compound.DNA complexes by iodide.

Docking Results

Figure S55. H-bonding pattern of compounds 7, 9-11, 16 and 21 with DNA base pairs.

			Compound	7			Compound	19
Sr. No.	Atoms	PM3*	AM**	HF**	Atoms	PM3*	AM**	HF**
1	Ν	0.0481	-0.2611	-0.6939	С	0.1150	0.1687	0.8756
2	С	-0.2198	-0.0078	-0.1134	Ν	-0.3252	-0.2897	-0.7247
3	С	-0.2118	-0.0711	-0.1073	С	0.1091	0.1655	0.8539
4	Ν	-0.1021	-0.2924	-0.6384	Ν	-0.3253	-0.2806	-0.7056
5	С	-0.2720	-0.0997	-0.2497	С	0.1073	0.1653	0.8548
6	С	-0.2117	-0.0714	-0.0982	Ν	-0.3205	-0.2791	-0.7086
7	С	-0.2209	-0.0075	-0.1295	С	-0.1054	-0.0188	0.2054
8	С	0.1407	0.2856	0.8762	С	-0.1356	-0.0514	-0.1821
9	Ν	-0.3356	-0.3941	-0.6572	С	-0.2219	-0.1528	-0.2766
10	С	0.1103	0.2767	0.8234	С	0.0639	0.0870	0.3832
11	Ν	-0.3218	-0.3792	-0.7927	С	-0.2157	-0.1712	-0.2767
12	С	0.1048	0.2732	0.8830	С	-0.1917	-0.1296	-0.2369
13	Ν	-0.3171	-0.3749	-0.7995	F	-0.0981	-0.0999	-0.3933
14	С	-0.1006	0.0773	0.1712	С	-0.0827	-0.0241	0.2034
15	С	-0.1441	-0.1076	-0.0742	С	-0.2236	-0.1534	-0.2358
16	С	-0.2202	-0.1430	-0.2561	С	-0.1313	-0.0801	-0.1926
17	С	0.0610	0.0719	0.4106	С	-0.0365	-0.0189	-0.1259
18	С	-0.2129	-0.1381	-0.2291	С	-0.1770	-0.1041	-0.2327
19	С	-0.1964	-0.1449	-0.2446	С	-0.1638	-0.0737	-0.1819
20	F	-0.0981	-0.1178	-0.4478	С	-0.0925	0.0110	0.6175
21	С	-0.0810	0.1153	0.1359	Ν	-0.1111	-0.1148	-0.6339
22	С	-0.2274	-0.1900	-0.1822	Ν	0.1742	-0.1788	-0.7888
23	С	-0.1304	-0.0509	-0.1379	С	-0.1743	-0.1059	-0.2162
24	С	-0.0418	-0.0626	-0.0115	С	-0.1732	-0.1165	-0.2300
25	С	-0.1747	-0.0894	-0.2367	С	-0.2127	-0.1440	-0.2437
26	С	-0.1691	-0.1552	-0.1705	С	-0.1202	-0.0657	-0.2013
27	С	-0.0914	0.0807	0.4756	С	-0.0723	-0.0655	0.1526
28	Ν	-0.1094	-0.1592	-0.5662	С	-0.2069	-0.0700	0.2073
29	Ν	0.1710	-0.2378	-0.7958	Ν	0.1143	-0.1392	-0.7779
30	С	-0.1743	-0.1340	-0.1120	Ν	0.1106	-0.1435	-0.7824
31	С	-0.1733	-0.1105	-0.2023	Н	0.2273	0.1560	0.2728
32	С	-0.2129	-0.1527	-0.2153	Н	0.2180	0.1502	0.2647
33	С	-0.1202	-0.0646	-0.0966	Н	0.2179	0.1498	0.2659
34	С	-0.0731	-0.0661	0.0851	Н	0.2008	0.1394	0.2488
35	С	-0.2061	-0.0213	0.1498	Н	0.2026	0.1390	0.2461
36	Ν	0.1132	-0.2513	-0.7566	Н	0.2284	0.1581	0.2829
37	Ν	0.1137	-0.2616	-0.7675	Н	0.1830	0.1395	0.2445
38	Н	0.1314	0.0921	0.1735	Н	0.2245	0.1576	0.2681
39	Н	0.1672	0.1247	0.2203	Н	0.1359	0.1977	0.3385

 Table S2. Charges (PM3, AM and HF) on different atoms of compounds 7 and 9.

40	Н	0.1325	0.0960	0.1773	Η	0.1984	0.1404	0.2485
41	Н	0.1135	0.0640	0.1565	Н	0.1899	0.1393	0.2449
42	Н	0.0884	0.0447	0.1339	Н	0.1928	0.1398	0.2430
43	Н	0.1147	0.0824	0.1688	Н	0.2100	0.1492	0.2617
44	Н	0.1148	0.0821	0.1689	Н	0.1357	0.1967	0.3491
45	Н	0.1321	0.0964	0.1786	Η	0.1316	0.1979	0.3528
46	Н	0.1147	0.0646	0.1565	Ν	0.0292	-0.1872	-0.7505
47	Н	0.1681	0.1259	0.1916	С	-0.2635	-0.0797	-0.2282
48	Н	0.1298	0.0915	0.1812	С	-0.0689	-0.0121	-0.0791
49	Н	0.2309	0.1603	0.3398	Ν	-0.3190	-0.3368	-0.6788
50	Н	0.2170	0.1503	0.2093	С	0.1347	0.1846	0.3364
51	Н	0.2175	0.1511	0.2183	С	0.1787	0.1352	0.2809
52	Н	0.1999	0.1373	0.2047	С	0.1350	0.0761	0.2177
53	Н	0.2022	0.1349	0.2054	С	0.0978	0.0771	0.2077
54	Н	0.2251	0.1598	0.2483	0	0.0839	0.0561	0.1765
55	Н	0.1887	0.1215	0.1999	Н	0.2182	0.2101	0.3781
56	Н	0.2274	0.1686	0.3387				
57	Н	0.1377	0.2504	0.3476				
58	Н	0.1983	0.1329	0.2116				
59	Н	0.1899	0.1296	0.1979				
60	Н	0.1928	0.1313	0.1965				
61	Н	0.2101	0.1447	0.2249				
62	Н	0.1331	0.2497	0.3620				
63	Н	0.1295	0.2505	0.3593				

 Table S3. Charges (PM3, AM and HF) on different atoms of compounds 10 and 11.

			Compound 11						
Sr. No.	Atoms	PM3*	AM**	HF**	Atoms	PM3*	AM**	HF**	
1	С	0.1105	0.1611	0.8777	С	0.1412	0.1643	0.7522	
2	Ν	-0.3357	-0.2884	-0.6610	Ν	-0.3362	-0.2990	-0.6432	
3	С	0.1117	0.1679	0.7292	С	0.1110	0.1639	0.7275	
4	Ν	-0.3282	-0.2769	-0.6026	Ν	-0.3241	-0.2839	-0.6079	
5	С	0.1067	0.1722	0.8172	С	0.1055	0.1617	0.7197	
6	Ν	-0.3177	-0.2873	-0.8038	Ν	-0.3181	-0.2758	-0.6012	
7	С	-0.1029	-0.0595	0.1168	С	-0.1015	-0.0454	0.1513	
8	С	-0.1948	-0.1080	-0.1509	С	-0.1952	-0.1229	-0.1499	
9	С	-0.2147	-0.1351	-0.2164	С	-0.2133	-0.1329	-0.2132	
10	С	0.0617	0.0707	0.3972	С	0.0624	0.0839	0.4099	
11	С	-0.2196	-0.1657	-0.2324	С	-0.2202	-0.1691	-0.2374	
12	С	-0.1387	-0.1315	-0.1706	С	-0.1425	-0.0473	-0.1363	
13	F	-0.0985	-0.1031	-0.4494	F	-0.0978	-0.0998	-0.4443	
14	С	-0.0815	-0.0231	0.1671	С	-0.0812	-0.0205	0.1703	
15	С	-0.2227	-0.1513	-0.1809	С	-0.2241	-0.1516	-0.1811	
16	С	-0.1327	-0.0768	-0.1320	С	-0.1302	-0.0774	-0.1324	

17	С	-0.0374	-0.0152	-0.0030	С	-0.0373	-0.0162	-0.0032
18	С	-0.1781	-0.1050	-0.2431	С	-0.1757	-0.1042	-0.2425
19	С	-0.1611	-0.0754	-0.1487	С	-0.1641	-0.0761	-0.1480
20	С	-0.0911	0.0111	0.4737	С	-0.0941	0.0119	0.4741
21	Ν	-0.1103	-0.1131	-0.5605	Ν	-0.1105	-0.1142	-0.5615
22	Ν	0.1710	-0.1786	-0.7943	Ν	0.1765	-0.1794	-0.7947
23	С	-0.1742	-0.1062	-0.1120	С	-0.1742	-0.1059	-0.1118
24	С	-0.1732	-0.1164	-0.2011	С	-0.1732	-0.1167	-0.2013
25	С	-0.2127	-0.1443	-0.2149	С	-0.2130	-0.1444	-0.2149
26	С	-0.1203	-0.0653	-0.0957	С	-0.1201	-0.0653	-0.0958
27	С	-0.0727	-0.0652	0.0840	С	-0.0729	-0.0651	0.0842
28	С	-0.2057	-0.0703	0.1513	С	-0.2078	-0.0701	0.1516
29	Ν	0.1078	-0.1415	-0.7462	Ν	0.1110	-0.1425	-0.7467
30	Ν	0.1126	-0.1242	-0.7565	Ν	0.1141	-0.1406	-0.7448
31	Н	0.1992	0.1396	0.2115	Н	0.1998	0.1390	0.2128
32	Н	0.2169	0.1474	0.2173	Н	0.2176	0.1473	0.2203
33	Н	0.2180	0.1468	0.2095	Н	0.2177	0.1512	0.2215
34	Н	0.2299	0.2275	0.3607	Н	0.2287	0.1547	0.2261
35	Н	0.2014	0.1389	0.2074	Н	0.2021	0.1377	0.2055
36	Н	0.2269	0.1589	0.2511	Н	0.2260	0.1580	0.2499
37	Н	0.1870	0.1387	0.2087	Н	0.1846	0.1382	0.2079
38	Н	0.2209	0.1540	0.2222	Н	0.2228	0.1538	0.2209
39	Н	0.1371	0.1969	0.3482	Η	0.1366	0.1973	0.3483
40	Н	0.1984	0.1401	0.2131	Η	0.1982	0.1400	0.2128
41	Н	0.1899	0.1391	0.1997	Н	0.1899	0.1390	0.1995
42	Н	0.1928	0.1398	0.1983	Н	0.1928	0.1396	0.1980
43	Η	0.2100	0.1495	0.2263	Η	0.2100	0.1492	0.2258
44	Н	0.1329	0.1968	0.3589	Н	0.1337	0.1953	0.3574
45	Н	0.1305	0.1993	0.3612	Н	0.1308	0.1946	0.3566
46	Ν	0.0357	-0.1379	-0.6960	Ν	0.0468	0.1772	-0.7200
47	С	-0.2301	-0.0759	-0.1118	С	-0.2195	0.0762	-0.1318
48	С	-0.2219	-0.0841	-0.1027	С	-0.2092	-0.1046	-0.1348
49	0	-0.1080	-0.2389	-0.6636	Ν	-0.0985	-0.2287	-0.6321
50	Н	-0.2521	-0.0901	-0.1152	Ο	-0.2206	-0.2603	-0.6796
51	Н	-0.2550	-0.0820	-0.1229	С	-0.2180	-0.1305	-0.1563
52	Н	-0.1032	-0.1250	-0.1199	С	-0.2476	-0.0608	-0.0086
53	Н	-0.1066	-0.0136	0.0319	С	-0.0806	-0.0631	-0.0206
54	Н	-0.2450	-0.3323	-0.7499	С	-0.3172	-0.1172	-0.1324
55	Н	0.1546	0.1227	0.2206	Н	0.1690	0.2039	0.3740
56	Н	0.1577	0.0825	0.1711	Н	0.1311	0.1241	0.2245
57	Н	0.1270	0.0737	0.1605	Н	0.1148	0.0638	0.1516
58	Н	0.1402	0.1012	0.1760	Н	0.1309	0.1139	0.1996
59	Н	0.1142	0.1038	0.1819	Н	0.1364	0.0717	0.1486

60	Н	0.1366	0.0751	0.1633	Н	0.1197	0.0960	0.1683
61	Н	0.1485	0.1182	0.1994	Н	0.1705	0.1121	0.1981
62	Η	0.1005	0.0850	0.1790	Н	0.1295	0.0706	0.1576
63	Н	0.1364	0.0715	0.1609	Н	0.1182	0.1113	0.1848
64	Н	0.1009	0.0923	0.1588	Н	0.1215	0.0709	0.1606
65	Н	0.1367	0.1077	0.1816	Н	0.1211	0.1123	0.1860
66	Н	0.1369	0.0759	0.1681	Н	0.1067	0.1030	0.1776
67	Н	0.1464	0.2017	0.3960	Н	0.2093	0.1106	0.1925

 Table S4. Charges (PM3, AM and HF) on different atoms of compounds 16 and 21.

Compound 16							Compound	21
Sr. No.	Atoms	PM3*	AM**	HF**	Atoms	PM3*	AM**	HF**
1	С	0.1939	0.1826	0.6009	С	0.1966	0.1516	0.6190
2	Ν	-0.2901	-0.3105	-0.6764	Ν	-0.2903	-0.2603	-0.6465
3	С	0.0851	0.2348	0.8926	С	0.0816	0.1537	0.7413
4	Ν	-0.3006	-0.3136	-0.6523	Ν	-0.2962	-0.2715	-0.6126
5	С	0.0811	0.2278	0.9182	С	0.0811	0.1619	0.8116
6	Ν	-0.2976	-0.3217	-0.7715	Ν	-0.2758	-0.2766	-0.8015
7	С	-0.1017	0.0498	0.2911	С	-0.1039	-0.0304	0.1722
8	С	-0.2126	-0.1328	-0.1866	С	-0.1432	-0.1078	-0.0899
9	С	-0.2037	-0.1488	-0.2474	С	-0.2187	-0.1583	-0.2554
10	С	0.0511	0.0738	0.3952	С	0.0625	0.0798	0.4096
11	С	-0.2074	-0.1478	-0.2274	С	-0.2131	-0.1679	-0.2297
12	С	-0.2041	-0.1461	-0.2233	С	-0.1951	-0.1317	-0.2446
13	F	-0.0992	-0.1072	-0.4515	F	-0.0976	-0.1021	-0.4483
14	С	-0.0841	0.0799	0.3221	С	-0.0854	-0.0176	0.1701
15	С	-0.2093	-0.1522	-0.2276	С	-0.2000	-0.1037	-0.1578
16	С	-0.1324	-0.0698	-0.1598	С	-0.1366	-0.0885	-0.1450
17	С	-0.0358	-0.0349	-0.0405	С	-0.0343	-0.0191	-0.0016
18	С	-0.1723	-0.1034	-0.1974	С	-0.1746	-0.0986	-0.2409
19	С	-0.1828	-0.1331	-0.1571	С	-0.1820	-0.1252	-0.1439
20	С	-0.0960	0.0659	0.5849	С	-0.0939	0.0119	0.4723
21	Ν	-0.1082	-0.1528	-0.6030	Ν	-0.1075	-0.1142	-0.5598
22	Ν	0.1750	-0.2485	-1.0315	Ν	0.1705	-0.1793	-0.7943
23	С	-0.1746	-0.1306	-0.1299	С	-0.1744	-0.1057	-0.1119
24	С	-0.1721	-0.1126	-0.2168	С	-0.1724	-0.1169	-0.2013
25	С	-0.2126	-0.1530	-0.2287	С	-0.2125	-0.1445	-0.2151
26	С	-0.1195	-0.0648	-0.1263	С	-0.1198	-0.0655	-0.0957
27	С	-0.0736	-0.0649	0.0855	С	-0.0737	-0.0653	0.0838
28	С	-0.2065	-0.0210	0.3298	С	-0.2049	-0.0703	0.1509
29	Ν	0.1276	-0.2598	-1.0015	Ν	0.1143	-0.1407	-0.7805
30	Ν	0.1408	-0.2360	-0.9843	Ν	0.1154	-0.1327	-0.7653

31	С	-0.0909	-0.0526	-0.1294	С	-0.1286	-0.0623	-0.0805
32	С	-0.1333	-0.0743	-0.1395	С	-0.0873	-0.0398	-0.1764
33	С	-0.2145	-0.1482	-0.2288	С	-0.3023	-0.2163	-0.2659
34	С	-0.1612	-0.1011	-0.1698	С	0.1218	0.0742	0.3912
35	С	-0.2128	-0.1478	-0.2365	С	-0.2610	-0.1191	-0.2031
36	С	-0.1373	-0.0791	-0.1280	С	-0.0986	-0.0882	-0.1227
37	Н	0.2900	0.2021	0.3613	Ο	-0.1932	-0.2054	-0.7295
38	Н	0.2149	0.1508	0.2285	С	-0.1491	-0.0741	-0.1538
39	Н	0.2158	0.1514	0.2317	Н	0.2303	0.2198	0.3524
40	Н	0.1996	0.1377	0.2170	Η	0.2183	0.1447	0.2063
41	Н	0.2076	0.1467	0.2267	Η	0.2179	0.1490	0.2169
42	Н	0.2277	0.1630	0.2669	Н	0.2008	0.1389	0.2048
43	Н	0.1890	0.1350	0.2193	Н	0.2085	0.1495	0.2194
44	Н	0.2210	0.1559	0.2430	Н	0.2277	0.1609	0.2492
45	Н	0.1375	0.2493	0.3833	Η	0.1895	0.1389	0.2098
46	Н	0.1987	0.1360	0.2162	Η	0.2164	0.1473	0.2202
47	Н	0.1903	0.1321	0.1998	Η	0.1375	0.1978	0.3488
48	Н	0.1933	0.1328	0.1982	Η	0.1989	0.1402	0.2132
49	Н	0.2104	0.1497	0.2339	Н	0.1903	0.1390	0.1995
50	Н	0.1445	0.2547	0.3986	Н	0.1932	0.1395	0.1979
51	Н	0.1338	0.2432	0.3892	Η	0.2103	0.1492	0.2261
52	Н	0.2191	0.1544	0.2582	Η	0.1411	0.1998	0.3660
53	Н	0.1974	0.1364	0.2107	Н	0.1315	0.1999	0.3636
54	Н	0.1927	0.1341	0.2141	Н	0.2173	0.1589	0.2588
55	Н	0.1972	0.1361	0.2139	Η	0.2095	0.1484	0.2163
56	Н	0.2114	0.1532	0.2424	Η	0.2187	0.1511	0.2291
57					Η	0.2156	0.1536	0.2314
58					Н	0.0969	0.0700	0.1734
59					Н	0.1185	0.1046	0.1928
60					Н	0.0937	0.0653	0.1555

*Obtained from Argus Lab, **Obtained from Gaussian – 09 Window

References

- 1. A. Solankee and Y. Prajapati, Rasayan J. Chem. 2009, 2, 9.
- **2.** P.T. Selvam, P.P. Radhika, S. Janagaraj and A.S. Kumar, *Research in Biotechnology*, 2011, **2**, 50.
- **3**. J. R. Lakowicz, *Principles of Fluorescence Spectroscopy*, Kluwer Academic/Plenum, New York, 1999.