Table S1.Activity and selectivity data for POM reaction over CeO_2 -ZrO2 support, Au/ZrO2, Au/CeO2-ZrO2
and Au/CeO2-TiO2-ZrO2 catalysts at different temperatures ranges for O2 : CH3OH molar feed
ratio 0.5 and GHSV =30000 h⁻¹ with methanol flow rate 0.52 cm³ hr⁻¹.

Catalysts	Conversion& selectivity	Temperature (°C)							
		275	300	325	350	375	400	425	450
CeO ₂ -ZrO ₂	O ₂ Conversion	1.79	7.14	14.29	32.14	1.43	91.07	99.86	100
	CH ₃ OH Conversion	2.75	3.89	7.89	15.91	45.08	51.37	61.4	64.87
	H ₂ Selectivity	0	0	0	0	4.59	10.52	16.46	21.69
	CO Selectivity	0	0	0	31.79	35.49	48.22	58.29	66.19
Au/ZrO ₂	O ₂ Conversion	7.22	17.59	32.41	59.6	75.93	85.56	91.85	96.3
	CH ₃ OH Conversion	12.77	18.5	33.41	44.88	48.8	49.86	57.04	65.99
	H ₂ Selectivity	0	0	0	0	0	4.17	8.66	15.95
	CO Selectivity	0	0	0	9.52	24.84	41.62	57.08	68.24
Au/CeO ₂ -ZrO ₂	O ₂ Conversion	99.8	99.8	100	100	100	100	100	100
	CH ₃ OH Conversion	49.1	58.9	70	81.4	91.6	94.3	97	98.79
	H ₂ Selectivity	31.6	44.8	57.1	68.7	75.5	68.1	63.1	57.8
	CO Selectivity	7.5	9.9	16.3	19.5	22.3	42.7	58.5	62.17
	Carbon balance	94.7	99.5	97.5	99.5	98.7	96.5	97.8	96.3
Au/CeO ₂ -ZrO ₂ -TiO ₂	O ₂ Conversion	99.8	99.8	99.8	100	100	100	100	100
	CH ₃ OH Conversion	44.7	51.4	57.4	69.4	82.2	93.6	99.2	99.44
	H ₂ Selectivity	6	14.5	37.6	46.2	59.8	67.8	70.6	66.6
	CO Selectivity	1.3	3.2	7.7	13.4	21	32.3	45	57.13
	Carbon balance	94.7	92.9	97.5	94.2	92.3	93.0	93.7	96.9

Supplementary calculation for mole balance

Carbon balance (For Au/CeZrO_x catalyst at 375 °C)

 CH_3OH moles IN = 0.00021485 moles/min

 O_2 moles IN = 0.000112303 moles/min

Feed ratio $O_2:CH_3OH = 0.491$

Reactor outlet mole balance:

Exit flow rate 50 cc/min measured by bubble flow meter.

The product mole flow rate were calculated using GC response factor to evaluate the mole fraction for each element then multiplied by the total exit flow rate. Ideal gas rate law was assumed in all the calculations.

		0.000010000 1 / :							
CH_3OH moles out =		0.000018009 moles/min							
O_2 moles out =		0.0 moles/min							
H ₂ moles out	=	0.00029727 moles/min							
CO moles out	=	0.0000479 moles/min							
CO ₂ moles out	=	0.000146257 moles/min							
		Reacted moles of CH ₃ O	H						
Conversion of $CH_3OH = \frac{Reacted moles of CH_3OH}{inlet moles of CH_3OH} x 100\% = 91.62\%$									
Selectivity of H ₂									
moles of H_2 produced 0.00029727									
$= \frac{moles \ of \ H_2 \ produced}{moles \ of \ CH_3 OH \ reacted \ x \ 2} x 100\% = \frac{0.00029727}{(0.00021485 - 0.000018009)x2}$									
x 100% = 75.5%									
Carbon balance:									
<i>Moles of carbon IN = 0.00021485 moles/min</i>									
Moles of carbon out = 0.000018009+0.0000479+0.000146257									
= 0.000212166 moles/min									
		l f	0.000212166						

 $Carbon \ balace = \frac{outlet \ moles \ of \ carbon}{Inlet \ moles \ of \ carbon} x \ 100\% = \frac{0.000212166}{0.00021485} \ x100\% = 98.7\%$

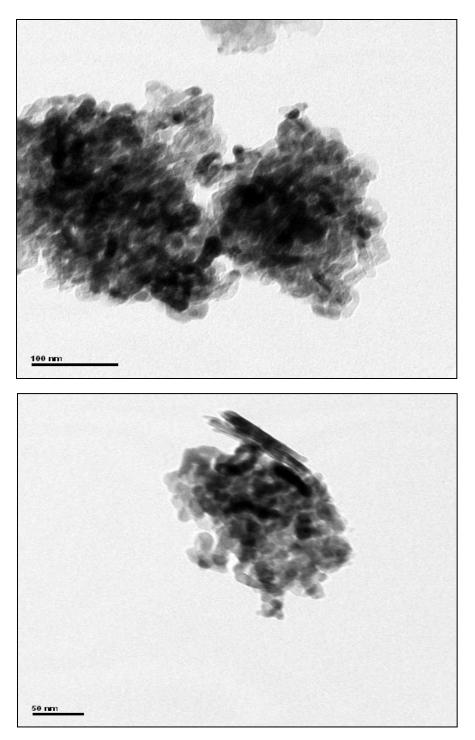


Figure S1. TEM (235KX magnification) show that the powders essentially comprised of finely divided material in the form of clusters. Each cluster consists of entangled tape-like structures, each strand being 5-10nm in width. Hence the overall material is very porous.