Supplementary Material

Adsorption of toxic acidic dye from aqueous solution onto diethylenetriamine functionalized magnetic glycidyl methacrylate -N,N' methylenebisacrylamide

K.Z. Elwakeel*a, A.A. El-Bindaryb, A.Z. El-Sonbatib, A.R. Hawasb

^a Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt

^bChemistry Department, faculty of Science, Damietta University, Damietta 34517, Egypt

^{*}Corresponding author: Fax: +20(0)1061694332.

E-mail address: Khalid_elwakeel@yahoo.com (K.Z. Elwakeel).

Table SMIT . Kineties inducis and then initial i		moucis	anu	unon	mittai	1011115
---	--	--------	-----	------	--------	---------

Kinetic model	Non-Linear form	Linear form	Plot	Author
Pseudo-First order	$q_t = q_e \left[1 - e^{-k_1 t}\right]$	$\log (q_e - q_t) = \log q_e - (\frac{k_1}{2.303}) t$	$\log (q_e - q_t) vs. t$	(Lagergren, 1898) [16]
Pseudo-Second order	$q_t = \frac{k_2 t}{1 + k_2 q_e t}$	$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + (\frac{1}{q_e}) t$	(t/q_t) vs. t	(Ho and McKay, 1999) [17]
Intraparticle diffusion	-	$q_t = k_i t^{0.5} + X$	$q_t vs. t^{0.5}$	(Weber and Morris, 1963) [18]
Elovich equation	$\frac{dq_t}{dt} = \alpha e^{-\beta q}$	$q_t = \frac{1}{\beta} \ln \alpha \beta + \frac{1}{\beta} \ln t$	q _t vs. Int	(Zeldowitsch, 1934) [19]

Table	SM2:	Sorption	isotherms	and	their	linear	forms

Isotherm	Non-Linear form	Linear form	Plot	Author
Langmuir	$q_e = \frac{q_{m,L} K_L C_e}{1 + K_L C_e}$	$\frac{C_{\rm e}}{q_{\rm e}} = \frac{C_{\rm e}}{q_{\rm m,L}} + \frac{1}{K_L q_{\rm m,L}}$	$\frac{C_e}{q_e}$ vs. C_e	(Langmuir, 1918) [21]
Freundlich	$q_e = K_F C_e^{1/n}$	$\ln q_e = \ln K_f + \frac{1}{n} \ln C_e$	ln q _e vs. ln C _e	(Freundlich, 1906) [22]
Dubinin-Radushkevich	$q_e = Q_{DR}e^{-K_{DR}\varepsilon^2}$	$\ln q_q = \ln Q_{DR} - K_{DR} \varepsilon^2$	$\ln q_e vs. \varepsilon^2$	(Dubinin et al., 1947) [23]
Temkin	$q_e = \frac{RT}{b_T} [\ln(A_T C_e)]$	$q_e = \left(\frac{RT}{b_T}\right) \ln A_T + \left(\frac{RT}{b_T}\right) \ln C_e$	q _e vs. ln C _e	(Temkin and Pyzhev, 1940) [24]

Figures captions

Figure SM1: FT-IR spectrum of the MGMA-DETA adsorbent.

- Figure SM2: Powder X-ray diffraction (XRD) pattern of MGMA-DETA particles (and tentative assignment of peaks).
- Figure SM3: Vibrating sample magnetometer curves for MGMA and MGMA-DETA sorbent.

Figure SM4: TGA analysis of the MGMA-DETA adsorbent.

Figure SM5: Modeling of uptake kinetics with: (a) PFORE, (b) PSORE.

- **Figure SM6:** Modeling of uptake kinetics with (a) simplified model of resistance to intraparticle diffusion (Morris and Weber equation), (b) Elovich equation.
- **Figure SM7:** Linearized plots for sorption isotherms: (a) Langmuir equation, (b) Freundlich equation.
- Figure SM8: Linearized plots for sorption isotherms: (a) Dubinin–Radushkevich equation, Temkin model.

Figure SM1

Figure SM2

Figure SM3

Figure SM4

Figure SM5

Figure SM6

Figure SM7

Figure SM8