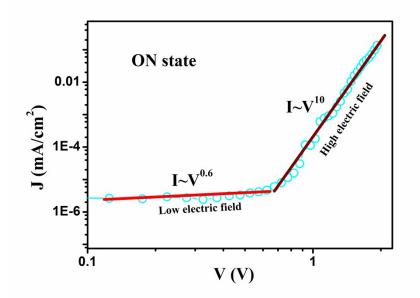

1	High white-light-controlled resistance switching memory
2	performance of Ag/ α -Fe ₂ O ₃ /FTO thin film
3	Mei Tang, ^{a,b,c} Bai Sun, ^{a,b,c} Jing Huang, ^{a,b,c} Ju Gao, ^{a,b,c,d} Chang Ming Li ^{a,b,c} *
4	a. Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, China
5	b. Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
6	c. Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing
7	400715, China
8	^{d.} Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou
9	215011, China
10	* E-mail: ecmli@swu.edu.cn
11	
12	
13	Supporting Information
	1 The share of a structure had in data light in data a data and a

14 1. The physical nature behind the light-induced changes

15 An applied electrical field can result in polarization of Fe_2O_3 . When applying white-light

16 illumination, the Fe₂O₃ absorbs the light energy and transition occurs, (Figure S1a) which enhances

17 the absolute values of V_{Set} and V_{Reset} to increase the number of memory logic states.


18

19

Figure S1. The physical nature behind the light-induced changes.

20 2. I–V plotted and fitted to a double logarithmic scale

In the **Figure S2**, the I–V characteristics of the ON state were plotted to fit in a double logarithmic scale, clearly showing an Ohmic conduction behavior with a slope of m<1.0 to strongly support the formation mechanism of the conductive paths in the device during the SET process. The fitting results m>3 at the high electric field, indicate that the charge transport behavior is in agreement with a trap-controlled space charge-limited current (SCLC) model, and the traps of oxygen vacancy are formed at the device as-prepared process.¹⁻³

27

28 Figure S2. I–V characteristics of the positive-voltage-sweep region were plotted and fitted to a
29 double logarithmic scale.

30

31 references

- 32 1. Q. Liu, W.Guan, S. Long, R. Jia, M. Liu, J.Chen. Appl. Phys. Lett., 2008, 92, 012117.
- 33 2. A. Carbone, B. K. Kotowska, D. Kotowski. Phy. Rev. lett., 2005,95(23), 236601.
- 34 3. G. Zhou, B. Wu, Z. Li, Z. Xiao, S. Li, P. Li, Current Appl. Phys., 2015, 15, 279-284.