Supporting Information

Figure S1. (a) SEM image and (b) XRD pattern of the carbon textile.

Figure S2. XRD patterns of (a) (Ni, Co)(CO₃)_{1/2}OH precursor and (b) NiCo₂S₄ nanotubes synthesized in the absence of CT.

Figure S3. SEM images of the (Ni, Co)(CO₃)_{1/2}OH NWAs/carbon textile.

Figure S4. SEM images of NiCo₂S₄ nanotube-assembled urchin-like structures.

Figure S5. XRD pattern of the NiCo₂S₄/CT composite.

Figure S6. (a) N_2 adsorption-desorption isotherms measured at 77 K and (b) corresponding pore size distribution of NiCo₂S₄ nanotubes synthesized in the absence of CT.

Figure S7. Electrochemical properties of the CT: (a) CV curve at 5 mV s⁻¹; (b) Galvanostatic charge-discharge curve at a current density of 1 A g^{-1} .

Figure S8. Electrochemical properties of the NiCo₂S₄ nanotube-assembled urchin-like structure: (a) CV curves at various scan rates ranging from 10 to 50 mV s⁻¹. (b) A comparison of CV curves at a scan rate of 50 mV s⁻¹. (c) Constant-current charge-discharge voltage profiles at different current densities. (d) Specific capacitance as a function of current density.

Reference	Type of materials	Specific capacitance (F g ⁻¹)	Capacitance retention
This work	NiCo ₂ S ₄ NTAs/CT	1004 F g^{-1} at 20 A g^{-1}	78% from 1 to 20 A g^{-1}
This work	$NiCo_2S_4$ nanotubes	476 F g ⁻¹ at 20 A g ⁻¹	45% from 1 to 20 A g^{-1}
1	NiCo ₂ S ₄ nanosheets/graphene	760 F g^{-1} at 20 A g^{-1}	52% from 3 to 20 A g^{-1}
2	NiCo ₂ S ₄ nanotubes	550 at 5 A g^{-1}	50% from 0.2 to 5 A g^{-1}
3	Urchin-like NiCo ₂ S ₄	888 at 20 A g^{-1}	77% from 1 to 20 A g^{-1}
4	NiCo ₂ S ₄ nanoprisms	585 F g ⁻¹ at 20 A g ⁻¹	65% from 1 to 20 $$ A g^{-1}
5	$NiCo_2S_4$ nanotubes on Ni foam	608 F g^{-1} at 15 A g^{-1}	78% from 2 to 15 A g^{-1}
6	Co ₃ S ₄ nanospheres/graphene	522 F g^{-1} at 5 A g^{-1}	76% from 0.5 to 5 A g^{-1}
7	CoS ₂ hollow spheres	450 F g ⁻¹ at 20 A g ⁻¹	35% from 1 to 20 $$ A g^{-1}
8	CoS nanowire arrays	102 F g ⁻¹ at 40 A g ⁻¹	79% from 2 to 40 $$ A g^{-1}
9	NiS hollow spheres	583 F g^{-1} at 10.2 A g^{-1}	63% from 4 to 10.2 $$ A g^{-1}
10	NiS ₂ nanocube	158 F g ⁻¹ at 12.5 A g ⁻¹	23% from 1.25 to 12.5 A g^{-1}
11	NiS/rGO composite	579 F g ⁻¹ at 5 A g ⁻¹	64% from 0.5 to 5 $$ A g^{-1}

 Table S1. Electrochemical performance of different Ni-Co sulfides based electrodes.

References:

- 1. S. J. Peng, L. L. Li, C. C. Li, H. T. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna and Q. Y. Yan, *Chem. Commun*, 2013, **49**, 10178-10180.
- 2. H. Z. Wan, J. J. Jiang, J. W. Yu, K. Xu, L. Miao, L. Zhang, H. C. Chen and Y. J. Ruan, *Crystengcomm*, 2013, **15**, 7649-7651.
- 3. H. C. Chen, J. J. Jiang, L. Zhang, H. Z. Wan, T. Qi and D. D. Xia, *Nanoscale*, 2013, 5, 8879-8883.
- 4. L. Yu, L. Zhang, H. B. Wu and X. W. Lou, Angew. Chem. Int. Ed., 2014, 53, 3711-3714.
- 5. J. Pu, T. T. Wang, H. Y. Wang, Y. Tong, C. C. Lu, W. Kong and Z. H. Wang, *Chempluschem*, 2014, **79**, 577-583.
- 6. Q. H. Wang, L. F. Jiao, H. M. Du, Y. C. Si, Y. J. Wang and H. T. Yuan, *J. Mater. Chem*, 2012, **22**, 21387-21391.
- 7. S. J. Peng, L. L. Li, H. T. Tan, R. Cai, W. H. Shi, C. C. Li, S. G. Mhaisalkar, M. Srinivasan, S. Ramakrishna and Q. Y. Yan, *Adv. Funct. Mater.*, 2014, **24**, 2155-2162.
- 8. X. H. Xia, C. R. Zhu, J. S. Luo, Z. Y. Zeng, C. Guan, C. F. Ng, H. Zhang and H. J. Fan, *Small*, 2014, **10**, 766-773.
- 9. T. Zhu, Z. Y. Wang, S. J. Ding, J. S. Chen and X. W. Lou, *RSC Adv.*, 2011, 1, 397-400.

- 10. H. Pang, C. Z. Wei, X. X. Li, G. C. Li, Y. H. Ma, S. J. Li, J. Chen and J. S. Zhang, Sci. Rep-*Uk*, 2014, **4**. J. Yang, X. Duan, W. Guo, D. Li, H. Zhang and W. Zheng, *Nano Energy*, 2014, **5**, 74-81.
- 11.