List of Supplementary Figures

Supp. Figure 1: XRD patterns of Sr_2PdO_3 and $Sr_{1.7}M_{0.3}PdO_3$ (with M= Ca, Mg and Ba) prepared by glycine-nitrate combustion method. Miller indices (h, l, k) are written in black line for Sr_2PdO_3 , red line for $SrPd_3O_4$, the black symbol (0) for $SrCl_2.6$ H₂O, red symbol (0) for KCl, blue symbol (0) for $SrCO_3$ and pink symbol (0) for PdO.

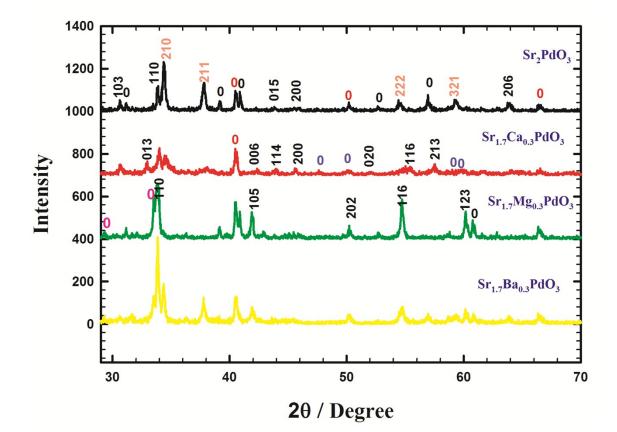
Supp. Figure 2: SEM micrographs of **(A)** graphite/Sr₂PdO₃ and **(B)** graphite/Sr_{1.7}Ca_{0.3}PdO₃ with magnification 20,000×.

Supp. Figure 3: The TEM diffraction patterns of (A) Sr₂PdO₃ and (B) Sr_{1.7}Ca_{0.3}PdO₃.

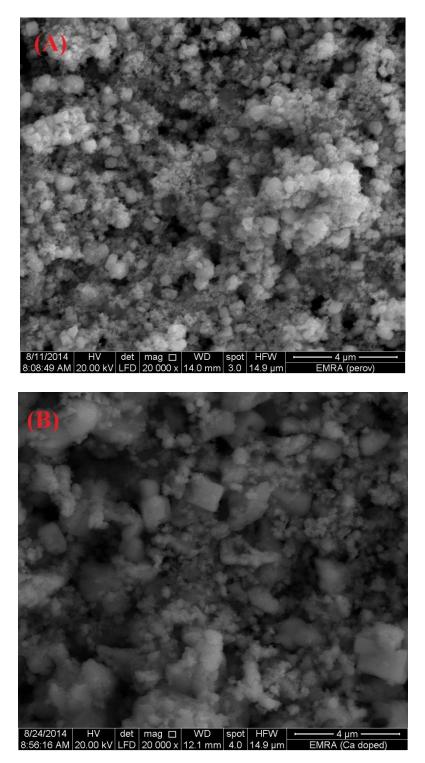
Supp. Figure 4: The particle size distribution of Sr₂PdO₃ and Sr_{1.7}Ca_{0.3}PdO₃.

Supp. Figure 5: CVs of 5 mM glucose/0.1 M NaOH at graphite/ $Sr_{1.7}Ca_{0.3}PdO_3$ at different scan rates (5–100 mV s⁻¹), the inset; the plot of the anodic peak current values versus square root of scan rate for 5 mM glucose/0.1 M NaOH at graphite/ $Sr_{1.7}Ca_{0.3}PdO_3$.

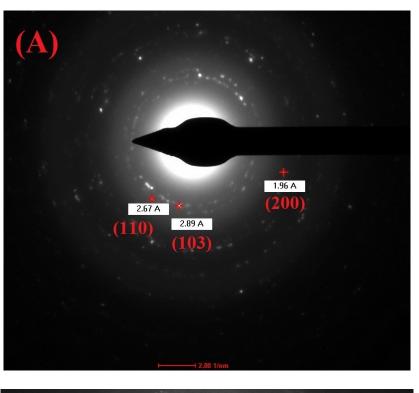
Supp. Figure 6: The effect of changing the pH value on the response of $Sr_{1.7}Ca_{0.3}PdO_3$ in 5 mM glucose solution prepared in 0.1 M PBS of pH range (11.0-12.5) and inset (2.7-9).

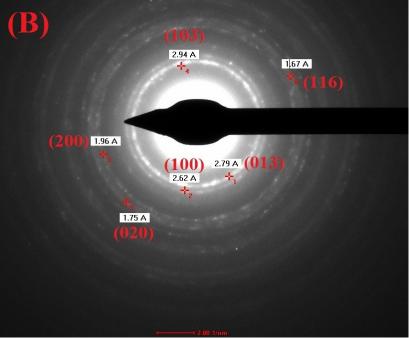

Supp. Figure 7: The effect of using different concentrations of NaOH (0.01 M - 0.5 M) on the anodic potential of 5 mM glucose at graphite/ $Sr_{1.7}Ca_{0.3}PdO_3$. Inset; the effect of using different concentrations of NaOH (0.01 M - 0.5 M) on the anodic peak current of 5 mM glucose at graphite/ $Sr_{1.7}Ca_{0.3}PdO_3$.

Supplement Table 1: Comparison for determination of glucose at various modified electrodes-	
based literature reports.	

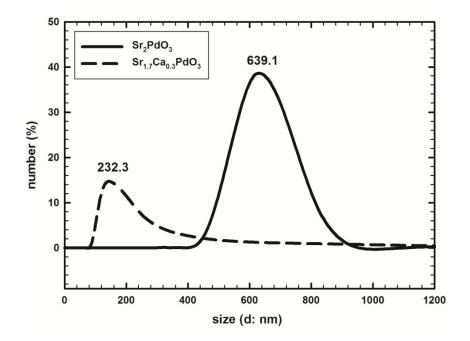

Electrode	Technique	Electrolyte	LDR	Sensitivity (µA mM ⁻¹ cm ⁻²)	LOD (µM)
Pt/Ni-Co nanowires [1]	Amperometric	0.1 M NaOH	0–0.2 mM	1125	1
LaNiO ₃ nanofibers [2]	Amperometric	0.1 M NaOH	1 μM – 1000 μM	42.321	0.32
P4VP-co-PAN [6]	Amperometric	0.1 M PBS, pH 7.4	$2.5 \ \mu M - 0.58 \ mM$	1382.8	0.58
Cu-Co NSs/RGO- CHIT/GCE [7]	Amperometric	0.1 M NaOH	0.015 mM – 6.95 mM	1921	10
Pt/PGA/GCE [8]	Amperometric	0.2 M PBS, pH 7.4	0.05 – 5.95 mM	Not reported	11
Gold nanoparticles [11]	Voltammetric	0.1 M NaOH	0.1 mM - 25 mM	87.5	50
CNT/Au [12]	Voltammetric	0.01 M PBS, pH 7.2	0 mM – 20 mM	18.6	100
CS-RGO-NiNPs [13]	Amperometric	0.1 M NaOH	0.2 mM – 9 mM	318.4	4.1
PtNFs-GO [14]	Amperometric	0.05 M PBS, pH 7.4	2 μM – 10.3 mM	1.26	2
$\frac{\text{La}_{0.6}\text{Sr}_{0.4}\text{Co}_{0.2}\text{Fe}_{0.8}\text{O}_{3-\delta}}{[17]}$	Amperometric	0.1 M KOH	0 μM - 200 μM	285	7
graphite/Sr _{1.7} Ca _{0.3} PdO ₃ (This work)	Voltammetric	0.1 M NaOH	5 μM – 5.6 mM	5166.7	0.0845

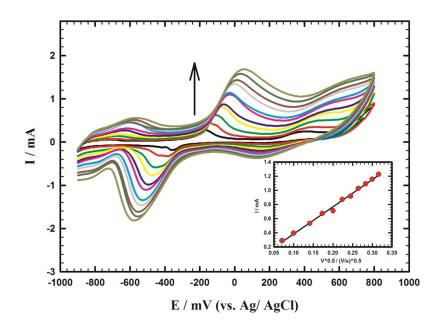
P4VP-co-PAN; poly(4-vinylpyridine)-co-poly(acrylonitrile) copolymer, Cu-Co NSs/RGO-CHIT/GCE; dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode, Pt/PGA/GCE; Pt onto a poly(glutamic acid) film modified glassy carbon electrode, CS-RGO–NiNPs; nanocomposites of chitosan-reduced graphene oxide– nickel nanoparticles, PtNFs-GO; glassy carbon electrode modified with platinum nanoflowers supported on graphene oxide and CNT/Au; nanosized gold onto carbonnanotubes.

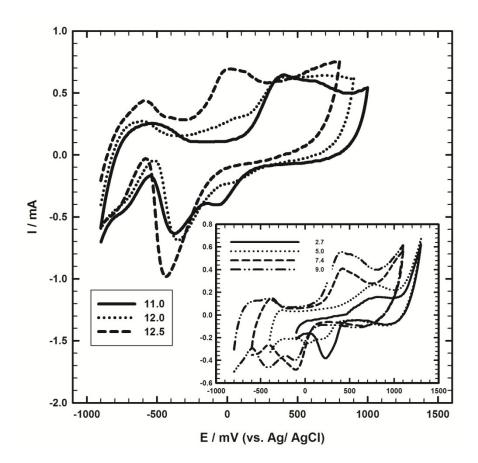


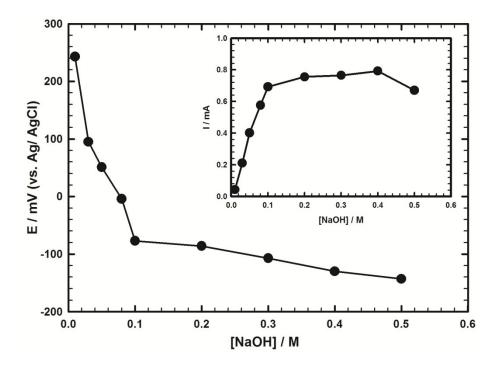


Supp. Fig. 2








Supp. Fig. 5

Supp. Fig. 7

