Electronic Supplementary Material:

Supplementary Table 1: Clinical Diagnostic Features of oral lesions to be included in the study

Disease	Diagnostic Features Used for Biopsy Recommendation	Reference
OLK	• white single localized, multiple, or diffuse	1, 2
	widespread lesions with	
	 surface nodularity 	
	o erythema	
	o ulceration	
	 increased firmness and induration 	
	 • unexplained hemorrhage 	
OSF	White Patch	3
	• Trismus	
	Soreness of mucosa	
	 Increased sensitivity to chilies 	
	• Nodule	
OSCC	Oral:	1, 2
	• Any solitary lump, ulcer, white or red lesion	
	retaining for more than three weeks or non-	
	healing socket	
	• Numbness	
	• Unexplained loose tooth'	
	Extraoral:	
	• Cervical lymphadenopathy may be detectable.	
	• Synchronous and metachronous second primary	
	tumors may be found in the upper aerodigestive	
	tract (pharynx, larynx, and esophagus).	

Supplementary Table 2: Details of the intensity features used to differentiate OCT images 4,5

Feature	Mathematical Formula	Description
$Mean_{Gray}(\mu)$	$\frac{\sum_{k=1}^{N} I_k}{N}$	N is the number of pixels and I_k is the k^{th} intensity level of the image.
<i>Median_{Gray}</i> (m)	$L + \frac{\left\lfloor \frac{N+1}{2} \right\rfloor - F}{f_m}$	Computes the middle value of the pixel intensities. This formula computes the median for ungrouped data. L : lower boundary of the median class, F : cumulative frequency of the classes before the median class, f_m : frequency of the median class, C : class size. For ungrouped sorted data, median is the value of the $\left\lfloor \frac{N+1}{2} \right\rfloor^{th}$ data point.

$Variance_{Gray}(\sigma^2)$	$\frac{\sum_{k=1}^{N}(I_k-\mu)^2}{N}$	The average of the squared differences of the intensities from the mean intensity.
$StandardDeviation_{Gray}(\sigma)$	$\sqrt{\sigma^2}$	A measure of how spread out the intensities are.
$Coefficient of Variance_{Gray}(C_{v})$	$\frac{\sigma}{\mu}$	The ratio of the standard deviation to the mean.
Entropy _{Gray}	$-\sum_{j=0}^{L-1} p_j \log_2 p_j$	A measure to describe the busyness of the image. L : number of pixel intensity levels in the image, p_j : probability of occurrence of a pixel with intensity value j .
Skewness _{Gray}	$\frac{1}{\sigma^3} \frac{\sum_{k=1}^{N} (I_k - \mu)^3}{N}$	A measure of symmetry, or more precisely, the lack of symmetry.
<i>Kurtosis_{Gray}</i>	$(\frac{1}{\sigma^4} \frac{\sum_{k=1}^{N} (I_k - \mu)^4}{N}) - 3$	A measure of any peakedness of the distribution of the data

Supplementary Table 3: Details of the textural features used to differentiate OCT images^{4, 6}

Feature	Mathematical Formula	Description
Co-occurrence Probability (C_{ij})	$\frac{P_{ij}}{\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} P_{ij}}$	P_{ij} is the number of co-occurrences of gray levels i and j .
Inertia _{GLCM}	$\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} (i-j)^2 C_{ij}$	A measure of the distribution of gray- scales in the image. A higher value indicates presence of higher magnitude elements away from the diagonal ($i \neq j$) in the GLCM.
	$\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} C_{ij} (\frac{(i-\mu_i)(j-\mu_j)}{\sigma_i \sigma_j})$	A measure of gray level linear dependence between the pixels at the specified positions relative to each other.
Energy _{GLCM}	${\sum}_{i=0}^{L-1} {\sum}_{j=0}^{L-1} C_{ij}^2$	High value of energy indicates orderliness in the image window.
Entropy _{GLCM}	$\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} C_{ij} \log_2(C_{ij} + \varepsilon)$	Higher entropy value indicates that an image is more homogenous. ε is an arbitrarily small constant equal to the floating point

		accuracy= 2^{-52}
Homogeneity _{GLCM}	$\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} \frac{C_{ij}}{1+ i-j }$	A high homogeneity measure indicates the presence of only a few gray levels in the image.
Cluster Shade	$\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} C_{ij} (i+j-\mu_i-\mu_j)^2$	A measure of skewness or asymmetry of the GLCM. High value indicates lack of symmetry. $\mu_i = \sum_{i=0}^{L-1} i \sum_{j=0}^{L-1} C_{ij}$; $\mu_j = \sum_{j=0}^{L-1} j \sum_{i=0}^{L-1} C_{ij}$.
Cluster Prominence	$\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} C_{ij} (i+j-\mu_i-\mu_j)$	A similar measure of skewness or asymmetry of the GLCM.A low value indicates a peak in the GLCM around the mean values thus implying little variation in the gray scales in the original image.
Information Measures of Correlation	$\sqrt{1-e^{-2(h_2-h_1)}}$	$h_{1} = Entropy_{GLCM};$ $h2 = -\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} C_{i}C_{j} \log_{2}(C_{i}C_{j} + \varepsilon);$ $C_{i} = \sum_{i=0}^{L-1} C_{ij}, C_{j} = \sum_{j=0}^{L-1} C_{ij}.$
Maximum Probability	$max(C_{ij})$	Maximum value of the co-occurrence matrix elements.
Sum of Entropy(S_E)	$-\sum_{k=2}^{2L-2} p_{i+j}(k) \log_2(p_{i+j}(k) +$	$F_{k} = p_{i+j}(k) = \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} C_{ij} ;$ i + j = k; k = 0, 1, 2,, 2(L-1).
Sum of Variance(S_{σ^2})	$-\sum_{k=2}^{2L-2} (k-S_E)^2 p_{i+j}(k)$	A high value indicates equal concentration of the frequency of occurrence in the highest and lowest cells of the GLCM.
Difference Entropy(D_E)	$-\sum_{k=0}^{L-1} p_{ i-j }(k) log_2(p_{ i-j }(k) +$	$F_{\mathcal{E}} = p_{i-j}(k) = \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} C_{ij} \qquad ;$ $ i-j = k; k = 0, 1, 2, \dots, L-1.$
$Mean_{LBP}(\mu_{LBP})$	$\frac{\sum_{k=1}^{M} ILBP}{M}$	Mean value of the intensity levels of the LBP (Local Binary Pattern) image. $ILBP_k$ is the k^{th} level intensity value of the LBP image. M is the number of intensity levels in the LBP image.

StandardDeviation _{LBP}	$\sqrt{\frac{\sum_{k=1}^{M}(ILBP_{k}-\mu_{LBP})^{2}}{M}}$	The average of the squared differences of the intensities from the mean intensity in the LBP image.
----------------------------------	---	---

References:

- 1. B. W. Neville and T. A. Day, *CA: a cancer journal for clinicians*, 2002, **52**, 195-215.
- 2. C. Scully, O. P. De Almeida, J. Bagan, P. D. Dios and A. M. Taylor, *Oral medicine and pathology at a glance*, John Wiley & Sons, 2013.
- 3. P. N. Wahi, V. L. Kapur, U. K. Luthra and M. C. Srivastava, *Bulletin of the World Health Organization*, 1966, **35**, 789-792.
- 4. R. M. Haralick, *Proceedings of the IEEE*, 1979, **67**, 786-804.
- 5. B. Park and Y. Chen, *Journal of agricultural engineering research*, 2001, **78**, 127-139.
- 6. G. J. Ughi, T. Adriaenssens, P. Sinnaeve, W. Desmet and J. D'Hooge, *Biomedical optics express*, 2013, **4**, 1014-1030.