Electronic Supplementary Information (ESI)

In Situ Synthesis of N-doped Carbon Nanotubes–BiOCl Nanocomposites and Their Synergistic Photocatalytic Performance

Lu-Ping Zhua,b,,*, Ling-Ling Wanga, Nai-Ci Binga, Peng Lib, Li-Jun Wanga,,*, Chao Huangc, and Gui-Hong Liaod

aSchool of Environmental and Materials Engineering, Shanghai Second Polytechnic University, Shanghai, 201209, China.

bEnvironmental Remediation Materials Unit, National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

cDepartment of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR.

dTechnical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

E-mail address: lpzhu@sspu.edu.cn; ZHU.luping@nims.go.jp; wang_lijun@yahoo.cn.

Supporting information table of contents:

Fig. S1 Plots of \(\ln(C/C_0) \) against time \(t \) of various samples: without catalyst, CN\textsubscript{x}NTs, P25, the as-prepared BiOCl and NCB samples, respectively. \((C_0 = 10 \text{ mg L}^{-1}, 200 \text{ mL}, \text{ and catalyst: } 20 \text{ mg})\).

Fig. S2 Reuse cycles of photodegradation of RhB over the N-doped carbon nanotubes–BiOCl nanocomposites loaded with 2.0 wt\% N-doped carbon nanotubes.\((C_0 = 10 \text{ mg L}^{-1}, 200 \text{ mL}, \text{ temperature: room temperature, time: } 50 \text{ min.})\) Regeneration: the used catalyst was washed with deionized water and absolute ethanol, and finally dried under vacuum at 50 °C for 8 h.

Fig. S3. Comparison of the adsorption efficiency of CN\textsubscript{x}NTs and 2-NCB.
Fig. S1

![Graph showing the relationship between ln(C/C_0) and time (min) for different catalysts.](image)

- **Blank**: $k = 7.73 \times 10^{-6}$
- **CNNTs**: $k = 9.5 \times 10^{-2}$
- **BOCl1**: $k = 3.05 \times 10^{-2}$
- **P25**: $k = 4.95 \times 10^{-2}$
- **2-NCB**: $k = 7.6 \times 10^{-2}$
- **1-NCB**: $k = 4.26 \times 10^{-2}$
- **4-NCB**: $k = 5.9 \times 10^{-2}$
- **6-NCB**: $k = 2.77 \times 10^{-2}$

Fig. S2

![Graph showing the photodegradation rate (%) vs. number of reuse cycles.](image)

Fig. S3

![Graph showing the change in C/C_0 over time (min) for different catalysts.](image)