Supplementary Material (ESI) for RSC Adv

## Preponderant Adsorption for Chlorpyrifos over Atrazine by Wheat Straw-Derived Biochar: Experimental and Theoretical Studies

Peifang Wang\*, Yayun Yin, Yong Guo\*, Chao Wang

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, P.R. China. E-mail: <u>pfwang2005@hhu.edu.cn;</u> E-mail: <u>guoyong@hhu.edu.cn;</u>

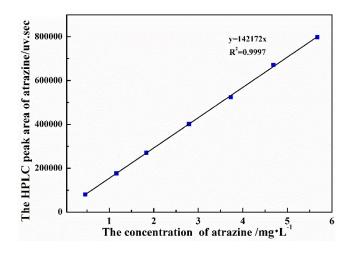



Fig.S1 The standard curve of atrazine in aqueous solution.

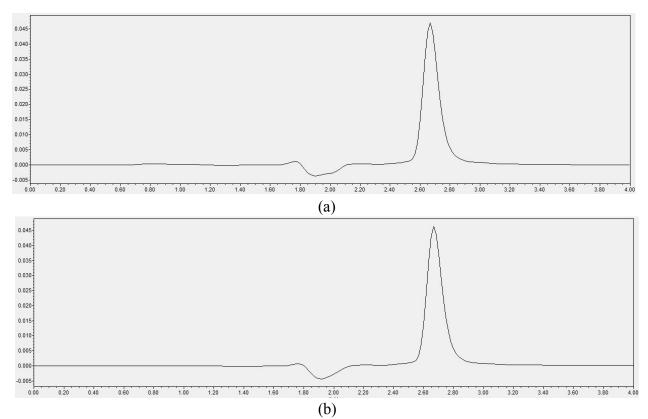



Fig.S2 (a) the High Performance Liquid Chromatography spectra of atrazine aqueous solution at 0 hour and (b) the High Performance Liquid Chromatography spectra of atrazine aqueous solution at 72 hours. The procedure of preparing atrazine aqueous solution was same as that in sorption experiment except that WS750 was not added.

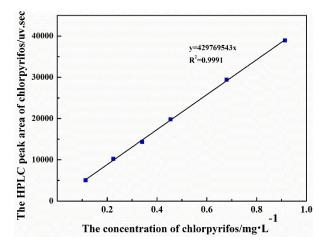



Fig.S3 The standard curve of chlorpyrifos in aqueous solution.

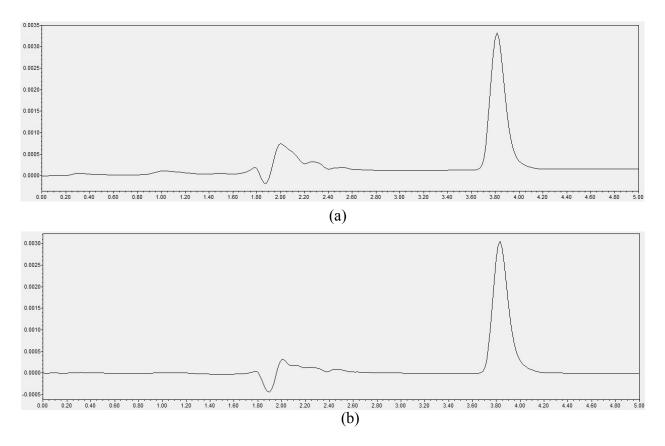



Fig.S4 (a) the High Performance Liquid Chromatography spectra of chlorpyrifos aqueous solution at 0 hour; (b) the High Performance Liquid Chromatography spectra of chlorpyrifos aqueous solution at 72 hours. The procedure of preparing chlorpyrifos aqueous solution was same as that in sorption experiment except that WS750 was not added.

| Experiments     | sorption<br>of<br>atrazine<br>(5.80<br>mg L <sup>-1</sup> )<br>by WS<br>samples | pH effect<br>on<br>sorption<br>of<br>atrazine<br>(5.80 mg<br>L <sup>-1</sup> )<br>by<br>WS750 | effect of<br>CaCl <sub>2</sub><br>concentration<br>on sorption of<br>atrazine (5.80<br>mg L <sup>-1</sup> ) by<br>WS750                               | sorption of<br>atrazine<br>(5.80 mg L <sup>-1</sup> )<br>by the<br>inorganic<br>component<br>in WS750 | kinetics<br>sorption<br>of<br>atrazine<br>(5.80<br>mg L <sup>-1</sup> )<br>by<br>WS750 | isotherm<br>sorption of<br>atrazine by<br>WS750                                                    | recycle<br>experiment<br>for sorption<br>of atrazine<br>(5.80 mg L <sup>-1</sup><br>) by WS750                                          | sorption of<br>chlorpyrifos by<br>WS750                                       | sorption<br>of<br>atrazine<br>by<br>WS750                                        | kinetics<br>sorption of<br>co-existing<br>chlorpyrifos<br>and atrazine<br>by WS750                                                                         | isotherm<br>sorption of co-<br>existing<br>chlorpyrifos and<br>atrazine by<br>WS750                                                                                                                                                                                                | Recycle<br>experiment for<br>sorption of the<br>coexisting<br>atrazine and<br>chlorpyrifos by<br>WS750                                                                                                      |
|-----------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Samples         |                                                                                 | pH values<br>were 4.9,<br>6.1, 7.1,<br>8.3, and<br>9.1 before<br>sorption.                    | CaCl <sub>2</sub><br>concentration<br>s ranged from<br>0.005 mol $L^{-1}$ ,<br>0.010 mol $L^{-1}$ ,<br>0.050 mol $L^{-1}$<br>to 0.100 mol<br>$L^{-1}$ | inorganic<br>component<br>in WS750:<br>SiO <sub>2</sub>                                               |                                                                                        | atrazine<br>concentrations<br>ranged from<br>2.80 mg L <sup>-1</sup> to<br>8.70 mg L <sup>-1</sup> | three parallel<br>experiments<br>were<br>performed.<br>WS750 was<br>washed with<br>methanol to<br>regenerate it<br>sorption<br>ability. | chlorpyrifos:<br>1.12 mg L <sup>-1</sup><br>(0.0032 mmol<br>L <sup>-1</sup> ) | atrazine<br>: 0.69<br>mg L <sup>-1</sup><br>(0.0032<br>mmol<br>L <sup>-1</sup> ) | atrazine:<br>0.69 mg L <sup>-1</sup><br>(0.0032<br>mmol L <sup>-1</sup> )<br>chlorpyrifos:<br>1.12 mg L <sup>-1</sup><br>(0.0032<br>mmol L <sup>-1</sup> ) | atrazine: 0.35<br>mg L <sup>-1</sup> (0.0016<br>mmol L <sup>-1</sup> ) to<br>0.73 mg L <sup>-1</sup><br>(0.0034 mmol L <sup>-1</sup> )<br>chlorpyrifos:<br>0.56 mg L <sup>-1</sup><br>(0.0016 mmol L <sup>-1</sup> ) to 1.19 mg L <sup>-1</sup><br>(0.0034 mmol L <sup>-1</sup> ). | three parallel<br>experiments<br>were performed.<br>WS750 was<br>washed with<br>methanol to<br>regenerate it<br>sorption ability.<br>atrazine: 0.69<br>mg L <sup>-1</sup> (0.0032<br>mmol L <sup>-1</sup> ) |
|                 | WS<br>sample:<br>5 mg                                                           | WS750: 5<br>mg                                                                                | WS750: 5 mg                                                                                                                                           | sample: 5<br>mg                                                                                       | WS750:<br>5 mg                                                                         | WS750: 5 mg                                                                                        | WS750:<br>5mg                                                                                                                           | WS750: 2.5<br>mg                                                              | WS750:<br>2.5 mg                                                                 | WS750: 2.5<br>mg                                                                                                                                           | WS750: 2.5 mg                                                                                                                                                                                                                                                                      | chlorpyrifos:<br>1.12 mg L <sup>-1</sup><br>(0.0032 mmol L <sup>-1</sup> )<br>WS750: 2.5 mg                                                                                                                 |
| WS250-<br>WS650 | Yes                                                                             | No                                                                                            | No                                                                                                                                                    | No                                                                                                    | No                                                                                     | No                                                                                                 | No                                                                                                                                      | No                                                                            | No                                                                               | No                                                                                                                                                         | No                                                                                                                                                                                                                                                                                 | No                                                                                                                                                                                                          |
| WS750           | Yes                                                                             | Yes                                                                                           | Yes                                                                                                                                                   | Yes                                                                                                   | Yes                                                                                    | Yes                                                                                                | Yes                                                                                                                                     | Yes                                                                           | Yes                                                                              | Yes                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                | Yes                                                                                                                                                                                                         |

Table S1 Summary of sorption experiments in 2.5 section. **Yes** implied that this kind of experiment had been done by the sample in the left column, while **No** implied this kind of experiment had not been done by the sample in the left column.

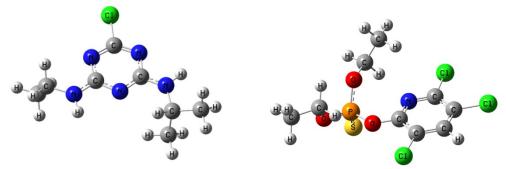



Fig.S5 The optimized structures of atrazine (left) and chlorpyrifos (right).

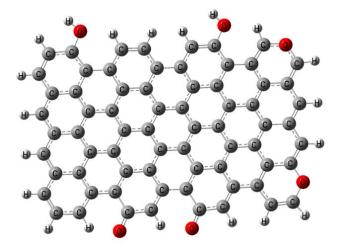



Fig. S6 The optimized structure of WSmodel.

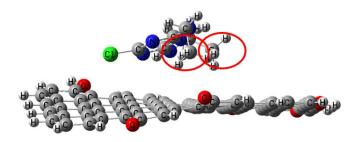



Fig. S7 The optimized structure of another atrazine...Wsmodel complex, in which the two methyl groups were pointed to the aromatic surface of WSmodel.

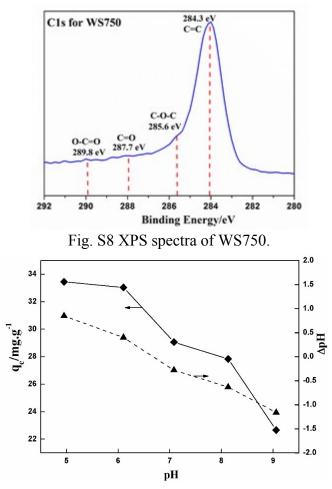



Fig.S9 The influence of pH on the sorption quantity of atrazine by WS750 (the full line with these diamond points and left Y-coordinate) as well as the change of each pH value before and after atrazine sorption by WS750 (the dotted line with these triangle points and right Y-coordinate). The concentration of atrazine is 5.80 mg L<sup>-1</sup>.

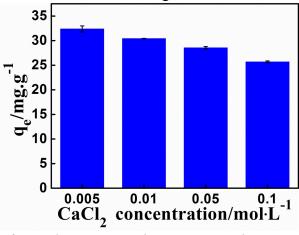



Fig.S10 The influence of  $CaCl_2$  concentrations on atrazine sorption by WS750. The concentration of atrazine is 5.80 mg L<sup>-1</sup>.



Fig. S11 (a) the kinetic sorption of atrazine by WS750 that was fitted by pseudo-first-order model; (b) the kinetic sorption of atrazine by WS750 that was fitted by pseudo-second-order model.

| model               | parameters                           | values  |  |
|---------------------|--------------------------------------|---------|--|
|                     | $k_1, h^{-1}$                        | 0.089   |  |
| pseudo-first-order  | $q_e, mg \cdot g^{-1}$               | 28.734  |  |
|                     | $\mathbb{R}^2$                       | 0.901   |  |
|                     |                                      |         |  |
|                     | $k_2$ , $kg \cdot (mg \cdot h)^{-1}$ | 0.00517 |  |
| pseudo-second-order | $q_e, mg \cdot g^{-1}$               | 33.333  |  |
|                     | $\mathbb{R}^2$                       | 0.995   |  |
|                     |                                      |         |  |

Table S2 Kinetic parameters for atrazine sorption by WS750.

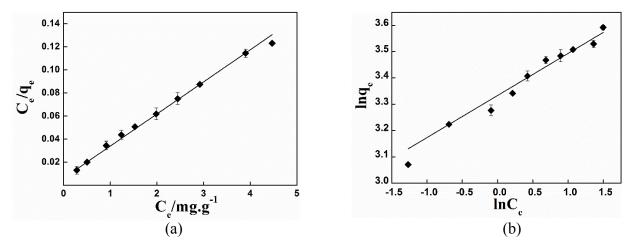



Fig. S12 (a) the isotherm sorption of atrazine by WS750 that was fitted by Langmuir model; (b) the isotherm sorption of atrazine by WS750 that was fitted by Freundlich model.

| Model      | parameters     | values |  |
|------------|----------------|--------|--|
|            | Q <sub>m</sub> | 20.161 |  |
| Langmuir   | b              | 15.5   |  |
|            | $\mathbb{R}^2$ | 0.996  |  |
| Freundlich | k              | 27.550 |  |
|            | 1/n            | 0.179  |  |
|            | R2             | 0.982  |  |

Table S3 Isotherm sorption parameters for atrazine by to WS750.

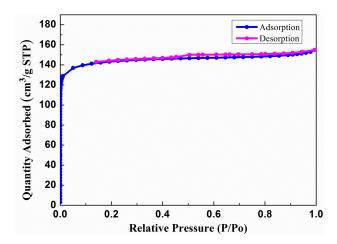



Fig.S13 N<sub>2</sub> adsorption-desorption isotherm of WS750.

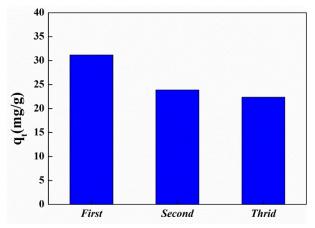



Fig. S14 Recycle experiments of WS750 for the sorption of atrazine. The concentration of atrazine is 5.8 mg L<sup>-1</sup>.

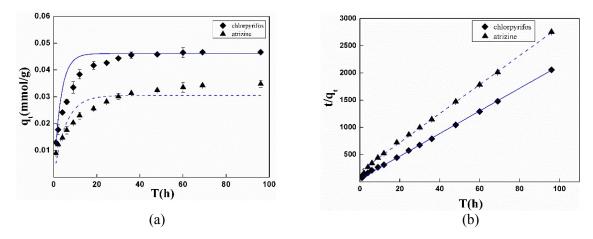



Fig S15. (a) the kinetic sorption of atrazine in the presence of chlorpyrifos (the dotted line with triangle points) and the kinetic sorption of chlorpyrifos in the presence of atrazine (the full line with rhombus points) that were fitted by pseudo-first-order model; (b) the kinetic sorption of atrazine in the presence of chlorpyrifos (the dotted line with triangle points) and the kinetic sorption of chlorpyrifos in the presence of atrazine (the full line with triangle points) and the kinetic sorption of chlorpyrifos in the presence of atrazine (the full line with triangle points) that were fitted by pseudo-first-order model; (b) the kinetic sorption of chlorpyrifos in the presence of atrazine (the full line with triangle points) that were fitted by pseudo-second-order model.

Table S4 Kinetic parameters of chlorpyrifos in the presence of atrazine and kinetic parameters of atrazine in the presence of chlorpyrifos.

| model                   | parameters               | chlorpyrifos | atrazine |
|-------------------------|--------------------------|--------------|----------|
|                         | $k_1,(h^{-1})$           | 0.3142       | 0.1846   |
| pseudo-first-order      | q <sub>e</sub> ,(mmol/g) | 0.0461       | 0.0305   |
|                         | R <sup>2</sup>           | 0.992        | 0.907    |
| naoudo accord           | $k_2$ , g/(mmol·h)       | 5.9597       | 4.3760   |
| pseudo-second-<br>order | $q_{e}$ ,(mmol/g)        | 0.0488       | 0.0369   |
| order                   | $\mathbb{R}^2$           | 0.999        | 0.998    |

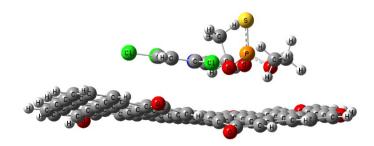



Fig.S16 The optimized structure of chlorpyrifos-WSmodel complex formed through pi-pi interaction.

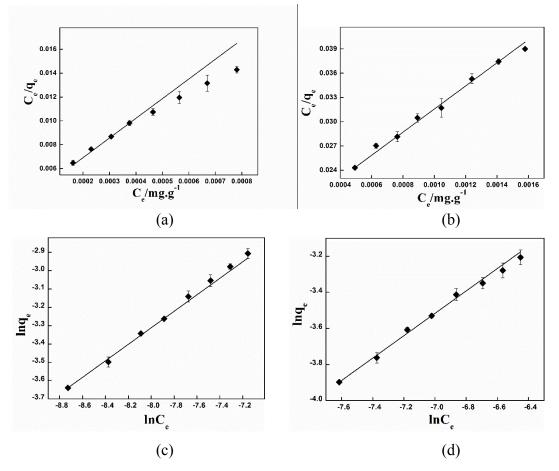



Fig S17 (a) the isotherm sorption of chlorpyrifos in the presence of atrazine that was fitted by Langmuir model; (b) the isotherm sorption of atrazine in the presence of chlorpyrifos that was fitted by Langmuir model; (c) the isotherm sorption of chlorpyrifos in the presence of atrazine that was fitted by Freundlich model; (b) the isotherm sorption of atrazine in the presence of chlorpyrifos that was fitted by Freundlich model.

| model      | parameters             | chlorpyrifos | atrazine |
|------------|------------------------|--------------|----------|
|            | $Q_m \text{ (mmol/g)}$ | 0.0784       | 0.0737   |
| Langmuir   | <i>b</i> (L/mmol)      | 2773.8       | 753.81   |
|            | $R^2$                  | 0.989        | 0.993    |
|            |                        |              |          |
|            | Κ                      | 1.635        | 1.865    |
| Freundlich | 1/n                    | 0.475        | 0.592    |
|            | $R^2$                  | 0.998        | 0.994    |

Table S5. Isotherm sorption parameters of chlorpyrifos in the presence of atrazine and isotherm soprtion parameters of atrazine in the presence of chlorpyrifos.

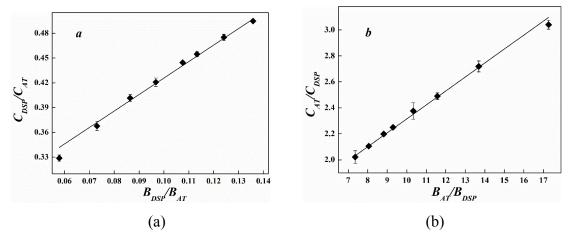



Fig. S18 (a) the competitive isotherm sorption fitted with Sheindorf–Rebuhn–Sheintuch equation for chlorpyrifos in the presence of atrazine; (b) the competitive isotherm sorption fitted with Sheindorf–Rebuhn–Sheintuch equation for atrazine in the presence of chlorpyrifos.

Table S6. Competitive coefficients  $a_{chlorpyrifos/atrazine}$  and  $a_{atrazine/chlorpyrifos}$  derived from Sheindrof-Rebhun-Sheintuch equation.

| model             | parameters                     | chlorpyrifos/atrazine | atrazine/chlorpyrifos |
|-------------------|--------------------------------|-----------------------|-----------------------|
| Sheindrof-Rebhun- | $a_{chlorpyrifos/atrazine}$    | 0.213                 | /                     |
| Sheintuch (SRS)   | <i>a</i> atrazine/chlorpyrifos | /                     | 1.287                 |
|                   | $R^2$                          | 0.994                 | 0.997                 |