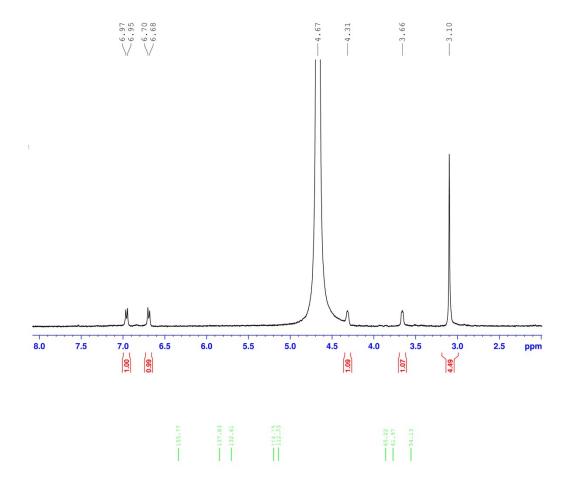
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Cucurbit[7]uril-tetraphenylethene Host-guest System Induced Emission Activity

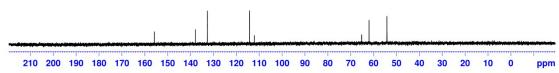
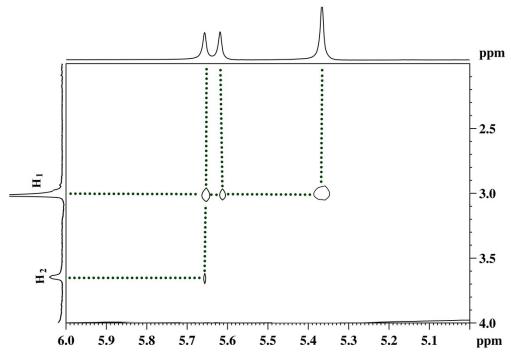
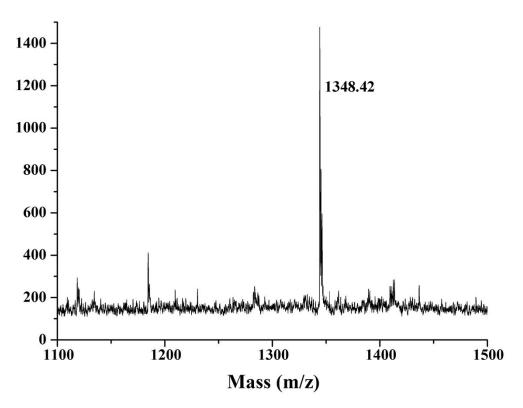
Rong Jiang, Shuang Wang, and Jinping Li

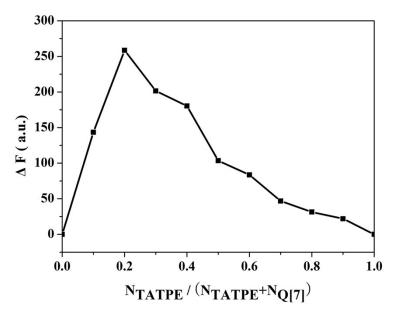

Caption of Content

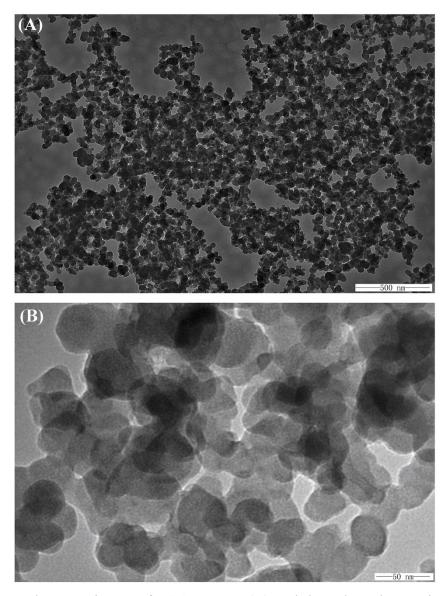
- **Scheme S1.** Synthesis of the guest TATPE.
- **Figure S1.** ¹H NMR spectrum of **2** recorded in D₂O at 25°C.
- Figure S2. ¹H NMR and ¹³C NMR spectra of TATPE recorded in D₂O at 25°C.
- **Figure S3.** Partial NOESY NMR spectrum of the complex Q[7]-TATPE recorded in D₂O at 25°C.
- **Figure S4.** The MALDI-TOF mass spectrum of Q[7]-TATPE.
- **Figure S5.** Job's plot of ΔF in fluorescence intensity of guest TATPE *versus* the molar ratio of $N_{TATPE}/(N_{TATPE} + N_{Q[7]})$ in water.
- **Figure S6.** The TEM image of Q[7]-TATPE (A) and the enlarged TEM image of A (B).
- **Figure S7.** ¹H NMR spectra of TATPE (A), the complex Q[7]-TATPE (B), adding 15.0 equiv. Ada to B (C), the complex Q[7]-Ada (D), and Ada (E) recorded in D₂O at 25°C.
- **Figure S8.** Curves of fluorescence intensity *versus* the molar ratio of $N_{Ada}/N_{Q[7]}$ measured at 464 nm and 396 nm in water.
- **Table S1**. Complex stability constant (K_a) , enthalpy (ΔH°) , and entropy changes $(T\Delta S^\circ)$ for Q[7]-TATPE.

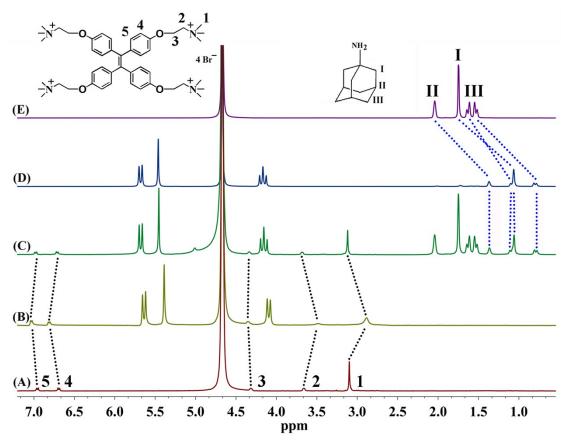
Scheme S1. Synthesis of the guest TATPE.

Figure S1. ¹H NMR spectrum of **2** recorded in D₂O at 25°C.


Figure S2. 1 H NMR and 13 C NMR spectra of TATPE recorded in D_{2} O at 25°C.


Figure S3. Partial NOESY NMR spectrum of the complex Q[7]-TATPE recorded in D_2O at 25°C.


Figure S4. The MALDI-TOF mass spectrum of Q[7]-TATPE. It is worth noting that the MALDI-TOF mass spectroscopic results, Figure S4, provide direct support for the formation of the host-guest inclusion complex Q[7]-TATPE. The strongest peak found at m/z 1348.42 corresponds to $\{4Q[7]-TATPE-4Br^-\}^{4+}$.

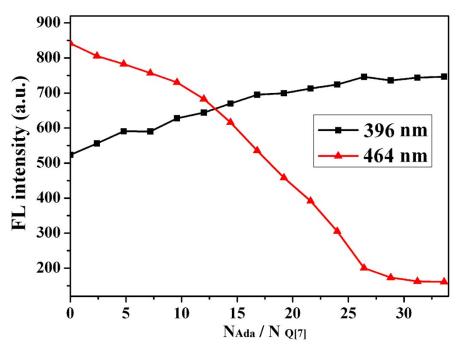

Figure S5. Job's plot of ΔF in fluorescence intensity of guest TATPE *versus* the molar ratio of $N_{TATPE}/(N_{TATPE} + N_{Q[7]})$ in water.

Figure S6. The TEM image of Q[7]-TATPE (A) and the enlarged TEM image of A (B).

Figure S7. ¹H NMR spectra of TATPE (A), the complex Q[7]-TATPE (B), adding 15.0 equiv. Ada to B (C), the complex Q[7]-Ada (D), and Ada (E) recorded in D_2O at 25°C.

Figure S8. Curves of fluorescence intensity *versus* the molar ratio of $N_{Ada}/N_{Q[7]}$ measured at 464 and 396 nm in water.

Table S1. Complex stability constant (K_a) , enthalpy (ΔH°) , and entropy changes $(T\Delta S^\circ)$ for Q[7]-TATPE.

Complex	$K_{\rm a}({ m M}^{-4})$	ΔH° (kJ mol ⁻¹)	<i>T</i> Δ <i>S</i> ° (kJ mol⁻¹)
Q[7]-TATPE	$(3.06 \pm 0.16) \times 10^5$	-93.62	-61.24