Supporting Information

Photocytotoxic luminescent lanthanide complexes of DTPA- bisamide using quinoline as photosensitizer

Khushbu Singh,[†] Samya Banerjee[‡] and Ashis K. Patra^{*,†}

[†]Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar

Pradesh, India

[‡]Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore

560012, Karnataka, India

*E-mail: akpatra@iitk.ac.in

Table of Contents	Page No.
Experimental	
Scheme S1: General synthetic scheme for complexes 1-3	S4
Figure S1: ESI-Mass spectra showing isotopic distribution for	S5
[Pr(DTPAAQ)(DMF)] (1)	
Figure S2: ESI-Mass spectra showing isotopic distribution for	S6
[Eu(DTPAAQ)(DMF)] (2)	
Figure S3: ESI-Mass spectra showing isotopic distribution for	S7
[Tb(DTPAAQ)(DMF)] (3)	
Crystallographic Data	
Figure S4: Unit cell packing diagram of [Pr(DTPAAQ)(DMF)] (1)	S8
Figure S5: ORTEP view of [Pr(DTPAAQ)(H ₂ O)] (1a)	S9
Figure S6: Unit cell packing diagram of [Pr(DTPAAQ)(H ₂ O)] (1a)	S10
Figure S7: Unit cell packing diagram of [Eu(DTPAAQ)(DMF)] (2)	S11
Figure S8: Unit cell packing diagram of [Tb(DTPAAQ)(DMF)] (3)	S12
Table S1.Crystal data and structural refinement details for complexes 1a and 1-3.	S13
Table S2: Selected bond distances (Å) and bond angles (deg) for	S14
[Pr(DTPAAQ)(DMF)] (1)	
Table S3: Selected bond distances (Å) and bond angles (deg) for	S15
$[Pr(DTPAAQ)(H_2O)] (2)$	
Table S4: Selected bond distances (Å) and bond angles (deg) for	S16
[Eu(DTPAAQ)(DMF)] (3)	
Table S5: Selected bond distances (Å) and bond angles (deg) for	S17
Tb(DTPAAQ)(DMF)] (4)	
Figure S9. Coordination polyhedra of the nine-coordinate {LnN ₃ O ₆ } lanthanide	S18
cores in complexes 1-3	
Figure S10. Plot showing comparison of bond distances (Å) for complexes $1, 2$	S19
and 3 .	
Figure S11: Steady state luminescence spectra of complexes 1-3	S20
Figure S12: Time-resolved luminescence spectra of complex 1	S21

Table S6 . Luminescence lifetime (τ), determination of inner-sphere hydration	S22
number (q) of the complexes in H ₂ O and D ₂ O	
DNA and BSA Binding Studies	
Figure S14: DNA binding plots by UV-Vis spectral method for complex 1	S23
Figure S15: DNA binding plots by UV-Vis spectral method for complex 2	S24
Figure S16: DNA binding plots by UV-Vis spectral method for complex 3	S25
Figure S17: Ethidium bromide displacement assay for [Pr(DTPAAQ)(DMF)]	S26
(1)	
Figure S18: Ethidium bromide displacement assay for	S27
[Eu(DTPAAQ)(DMF)] (2)	
Figure S19: Ethidium bromide displacement assay for	S28
[Tb(DTPAAQ)(DMF)] (3)	
Figure S20: BSA binding plots for complex 1	S29
Figure S21: BSA binding plots for complex 2	S30
DNA/BSA Sensing Studies	
Figure S22: Time resolved luminescence spectra of [Tb(DTPAAQ)(DMF)] (3)	S31
on increasing concentration of CT-DNA	
Figure S24: Luminescence decay profile of complex 2 and 3 in presence of CT-	S32
DNA	
Table S7: Luminescence lifetime of complexes 2 and 3 in presence of CT-DNA	S32
DNA Cleavage Studies	
Figure S24: Time dependent photo-induced DNA cleavage of complexes 1-3	S33
$(100 \ \mu M)$ at 312 nm	

Scheme S1. General synthetic scheme for H₃DTPAAQ ligand and complexes 1-3.

Figure S1. ESI-MS of complex **1** in aqueous-DMF: m/z [(**1**–DMF + H]⁺ calcd. for C₃₂H₃₂N₇O₈Pr (relative abundance): 784.14 (100.0%), 785.14 (37.93%), 786.14 (8.5%). Found: 784.14 (100.0%), 785.14 (39.82%), 786.14 (7.8%).

Figure S2. ESI-MS of complex **2** in aqueous DMF: m/z [**2** – DMF + H]⁺; calcd. for C₃₂H₃₂N₇O₈Eu (relative abundance): 795.15 (100.0%), 794.15 (38.2%), 796.15 (45.5%), 797.15 (3.3%). Found: 795.15 (100.0%), 794.15 (90.8%), 796.15 (36.1%), 797.15 (7.8%).

Figure S3. ESI-MS of complex **3** in aqueous DMF: *m*/*z* [**3**–DMF + H]⁺; calcd. for C₃₃H₃₅N₇O₈Tb (relative abundance): 802.15 (100.0%), 803.15 (35.3%), 804.15 (8.5%). Found: 802.15 (100.0%), 803.15 (37.5%), 804.15 (7.5%).

Figure S4. Unit cell packing diagram of [Pr(DTPAAQ)(DMF)] (1) along b-axis.

Figure S5. ORTEP view of [Pr(DTPAAQ)(H₂O)] (**1a**) with 50% probability thermal ellipsoid with atom labelling scheme for the metal and heteroatoms.

Figure S6. Unit cell packing diagram of [Pr(DTPAAQ)(H₂O)] (1a) along b-axis.

Figure S7. Unit cell packing diagram of [Eu(DTPAAQ)(DMF)] (2) along b-axis.

Figure S8. Unit cell packing diagram of [Tb(DTPAAQ)(DMF)] (3) along b-axis.

Parameters	1.DMF.4H2O	1a	2.4H ₂ O	3·DMF·3H ₂ O	
Empirical Formula	C38H54N9O13Pr	C32H34N7O9Pr	$C_{35}H_{41}N_8O_{13}Eu$	C38H52N9O13Tb	
Formula weight	985.81	801.57	933.72	1001	
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic	
Space group	$P2_{1}/c$	<i>P</i> -1	$P2_{1}/n$	$P2_{1}/n$	
<i>a</i> , Å	11.343(5)	10.085(5)	11.132(2)	10.9299(4)	
<i>b</i> , Å	23.530(5)	11.118(5)	23.789(5)	23.1611(10)	
<i>c</i> , Å	16.714(5)	18.036(5)	17.045(3)	17.1891(8)	
γ, deg	90.0	98.989(5)	90.0	90.0	
β , deg	109.356(5)	93.383(5)	108.57(3)	108.1320(10)	
γ, deg	90.0	96.356(5)	90.0	90.0	
$V, Å^3$	4209(2)	1979.2(14)	4279.0(15)	4135.3(3)	
Ζ	4	2	4	4	
$ ho_{ m calcd}$, g/cm ⁻³	1.556	1.345	1.449	1.609	
<i>Т</i> , К	100(2)	293(2)	293(2)	100(2)	
Absorption coeff., μ ,mm ⁻¹	1.233	1.285	1.534	1.786	
θ limits, deg	2.09 - 26.00	2.29 - 25.00	1.52 - 25.49	2.15 - 28.28	
No. of measured reflections	39462	7688	31403	36308	
No. of unique reflections	8264	5998	7968	10258	
No. of observed reflections	5852	4293	6030	7689	
[I > 2O(I)]	550	440	514	550	
$COE \text{ on } E^2$	559 1.017	440	514 1 041	330	
$\frac{1}{2} \frac{1}{2} \frac{1}$	1.017	1.045	1.041 5.48	1.040	
$\Lambda_1 [I > 2O(I)]^{-}, \%$	т. <i>71</i>	10.71 26.24	J. 4 0	ч.J4 11.05	
WA2, %	12.19 1 255 and	20.24	1/.40	11.03	
hax, him peaks,	1.233 allu	2.169	1.919 allu - 0.723	2.41/ allu	
$\frac{\nabla A}{[a]} = \frac{-0.812}{[b]} = \frac{-2.108}{[b]} = \frac{-2.108}{[b]} = \frac{-1.531}{[b]} = -1.53$					
$K_1 = \Sigma F_0 - F_C / \Sigma I $	$ \mathbf{F}_0 - \mathbf{F}_0 - \mathbf{F}_0 / \mathbf{Z} \mathbf{F}_0 , \mathbf{Y}_0 \mathbf{K}_2 = \{\mathbf{Z} [W(\mathbf{F}_0 - \mathbf{F}_0)] / \mathbf{Z} W(\mathbf{F}_0) \}\}$				

Table S1.Crystal data and structural refinement details for complexes 1a and 1-3.

Pr(1)-O(1)	2.508(4)	O(5)-Pr(1)-O(1)	78.18(15)
Pr(1)-O(2)	2.519(4)	O(5)-Pr(1)-O(2)	77.71(15)
Pr(1)-O(3)	2.404(4)	O(2)-Pr(1)-N(3)	59.71(14)
Pr(1)-O(4)	2.422(4)	O(3)-Pr(1)-N(1)	64.89(13)
Pr(1)-O(5)	2.419(4)	O(3)-Pr(1)-N(2)	78.31(15)
Pr(1)-O(6)	2.454(4)	O(3)-Pr(1)-N(3)	138.66(14)
Pr(1)-N(1)	2.736(4)	O(5)-Pr(1)-N(1)	70.98(15)
Pr(1)-N(2)	2.698(4)	O(5)-Pr(1)-O(4)	131.32(14)
Pr(1)-N(3)	2.825(5)	O(5)-Pr(1)-O(6)	132.17(14)
O(1)-Pr(1)-O(2)	96.16(13)	O(6)-Pr(1)-O(1)	73.62(13)
O(3)-Pr(1)-O(1)	82.28(13)	O(6)-Pr(1)-O(2)	68.01(14)
O(3)-Pr(1)-O(2)	144.01(13)	O(1)-Pr(1)-N(1)	62.50(13)
O(3)-Pr(1)-O(4)	76.18(13)	O(1)-Pr(1)-N(2)	129.54(13)
O(3)-Pr(1)-O(5)	135.86(13)	O(1)-Pr(1)-N(3)	137.08(15)
O(3)-Pr(1)-O(6)	77.21(13)	O(2)-Pr(1)-N(1)	144.86(15)
O(4)-Pr(1)-O(1)	150.43(14)	O(5)-Pr(1)-N(2)	84.35(14)
O(4)-Pr(1)-O(2)	89.75(14)	O(5)-Pr(1)-N(3)	63.00(15)
O(4)-Pr(1)-O(6)	81.95(13)		

Table S2. Selected bond distances (Å) and bond angles (deg) for [Pr(DTPAAQ)(DMF)]•DMF•3H2O (1)

Pr(1)-O(1)	2.464(9)	O(4)-Pr(1)-O(2)	88.2(6)
Pr(1)-O(2)	2.397(18)	O(4)-Pr(1)-O(5)	131.2(5)
Pr(1)-O(2A)	1.85(4)	O(4)-Pr(1)-O(6)	83.0(5)
Pr(1)-O(3)	1.810(16)	O(5)-Pr(1)-O(1)	77.2(4)
Pr(1)-O(3A)	2.32(4)	O(5)-Pr(1)-O(6)	133.7(4)
Pr(1)-O(4)	2.372(19)	O(3)-Pr(1)-N(1)	47.1(6)
Pr(1)-O(5)	2.409(12)	O(1)-Pr(1)-N(1)	61.8(4)
Pr(1)-O(6)	2.520(10)	O(1)-Pr(1)-N(2)	128.1(4)
Pr(1)-N(1)	2.760(12)	O(1)-Pr(1)-N(3)	134.4(3)
Pr(1)-N(2)	2.683(9)	O(2)-Pr(1)-N(1)	146.1(5)
Pr(1)-N(3)	2.798(11)	O(2)-Pr(1)-N(2)	126.7(5)
O(1)-Pr(1)-O(6)	72.4(4)	O(2)-Pr(1)-N(3)	59.1(4)
O(2)-Pr(1)-O(1)	96.3(5)	O(2A)-Pr(1)-N(1)	135.9(12)
O(2)-Pr(1)-O(5)	80.4(5)	O(2A)-Pr(1)-N(2)	120.5(12)
O(2)-Pr(1)-O(6)	69.4(5)	O(2A)-Pr(1)-N(3)	52.4(11)
O(2A)-Pr(1)-O(1)	95.1(12)	O(3)-Pr(1)-N(1)	47.1(6)
O(2A)-Pr(1)-O(2)	12.3(12)	O(3)-Pr(1)-N(2)	61.5(6)
O(2A)-Pr(1)-(3A)	155.1(15)	O(3)-Pr(1)-N(3)	129.3(5)
O(2A)-Pr(1)-O(4)	94.9(13)	O(3A)-Pr(1)-N(1)	65.0(9)
O(2A)-Pr(1)-O(5)	68.2(13)	O(3A)-Pr(1)-N(2)	77.5(9)
O(2A)-Pr(1)-O(6)	80.6(12)	O(3A)-Pr(1)-N(3)	139.4(9)
O(3)-Pr(1)-O(1)	85.2(5)	O(4)-Pr(1)-N(1)	123.7(5)
O(3)-Pr(1)-O(2)	164.2(6)	O(4)-Pr(1)-N(2)	67.0(5)
O(3)-Pr(1)-O(2A)	176.5(13)	O(4)-Pr(1)-N(3)	71.4(5)
O(3)-Pr(1)-O(3A)	21.5(9)	O(5)-Pr(1)-N(1)	70.1(4)
O(3)-Pr(1)-O(4)	83.3(7)	O(5)-Pr(1)-N(2)	82.6(4)
O(3)-Pr(1)-O(5)	115.2(6)	O(5)-Pr(1)-N(3)	62.1(4)
O(3)-Pr(1)-O(6)	96.3(6)	O(6)-Pr(1)-N(1)	120.9(3)
O(3A)-Pr(1)-O(1)	84.2(9)	O(6)-Pr(1)-N(2)	143.7(4)
O(3A)-Pr(1)-O(2)	142.8(10)	O(6)-Pr(1)-N(3)	122.1(3)
O(3A)-Pr(1)-O(4)	75.6(10)	N(1)-Pr(1)-N(3)	116.5(3)
O(3A)-Pr(1)-O(5)	135.0(9)	N(2)-Pr(1)-N(1)	66.4(3)
O(3A)-Pr(1)-O(6)	75.4(9)	N(2)-Pr(1)-N(3)	68.3(4)
O(4)- $Pr(1)$ - $O(1)$	151.5(5)		

 Table S3. Selected bond distances (Å) and bond angles (deg) for [Pr(DTPAAQ)(H2O)] (1a)

Eu(1)-O(1)	2.453(4)	O(4)-Eu(1)-O(6)	79.66(18)
Eu(1)-O(2)	2.486(5)	O(5)-Eu(1)-O(1)	76.59(18)
Eu(1)-O(3)	2.348(5)	O(5)-Eu(1)-O(2)	77.98(19)
Eu(1)-O(4)	2.366(4)	O(5)-Eu(1)-O(3)	136.00(18)
Eu(1)-O(5)	2.339(5)	O(5)-Eu(1)-O(4)	132.53(18)
Eu(1)-O(6)	2.394(5)	O(5)-Eu(1)-O(6)	132.62(19)
Eu(1)-N(1)	2.689(6)	O(6)-Eu(1)-O(1)	73.86(17)
Eu(1)-N(2)	2.636(5)	O(6)-Eu(1)-O(2)	67.59(18)
Eu(1)-N(3)	2.759(6)	O(2)-Eu(1)-N(3)	60.38(17)
O(1)-Eu(1)-O(2)	93.00(16)	O(3)-Eu(1)-N(1)	65.32(18)
O(3)-Eu(1)-O(1)	84.53(18)	O(5)-Eu(1)-N(3)	63.99(19)
O(3)-Eu(1)-O(2)	143.16(17)	O(6)-Eu(1)-N(1)	123.86(18)
O(3)-Eu(1)-O(4)	76.40(17)	O(6)-Eu(1)-N(2)	140.73(19)
O(3)-Eu(1)-O(6)	76.50(18)	O(6)-Eu(1)-N(3)	118.78(18)
O(4)-Eu(1)-O(1)	150.33(17)	N(1)-Eu(1)-N(3)	117.13(18)
O(4)-Eu(1)-O(2)	89.04(17)		

Table S4. Selected bond distances (Å) and bond angles (deg) for [Eu(DTPAAQ)(DMF)]•3H₂O (2•3H₂O)

Table S5. Selected bond distances (Å) and bond angles (deg) for [Tb(DTPAAQ)(DMF)]• DMF•3H₂O (**3**•DMF•3H₂O).

Tb(1)-O(1)	2.419(3)	O(6)-Tb(1)-O(1)	72.92(11)
Tb(1)-O(2)	2.463(3)	O(6)-Tb(1)-O(2)	67.39(11)
Tb(1)-O(3)	2.334(3)	O(1)-Tb(1)-N(1)	64.06(11)
Tb(1)-O(4)	2.338(3)	O(1)-Tb(1)-N(2)	132.20(11)
Tb(1)-O(5)	2.327(3)	O(1)-Tb(1)-N(3)	137.44(12)
Tb(1)-O(6)	2.358(3)	O(2)-Tb(1)-N(1)	143.15(11)
Tb(1)-N(1)	2.662(4)	O(2)-Tb(1)-N(3)	61.48(11)
Tb(1)-N(2)	2.626(4)	O(3)-Tb(1)-N(1)	66.08(11)
Tb(1)-N(3)	2.728(4)	O(3)-Tb(1)-N(2)	75.74(12)
O(1)-Tb(1)-O(2)	91.42(10)	O(3)-Tb(1)-N(3)	137.02(12)
O(3)-Tb(1)-O(1)	84.70(11)	O(4)-Tb(1)-N(1)	126.25(11)
O(3)-Tb(1)-O(2)	142.53(11)	O(4)-Tb(1)-N(2)	67.47(12)
O(3)-Tb(1)-O(4)	74.91(11)	O(4)-Tb(1)-N(3)	69.95(12)
O(3)-Tb(1)-O(6)	75.90(11)	O(5)-Tb(1)-N(1)	71.56(12)
O(4)-Tb(1)-O(1)	147.08(11)	O(5)-Tb(1)-N(2)	88.27(13)
O(4)-Tb(1)-O(2)	89.51(11)	O(5)-Tb(1)-N(3)	65.17(13)
O(4)-Tb(1)-O(6)	77.15(11)	O(6)-Tb(1)-N(1)	123.79(11)
O(5)-Tb(1)-O(1)	77.55(12)	O(6)-Tb(1)-N(3)	117.98(12)
O(5)-Tb(1)-O(2)	76.70(12)	N(1)-Tb(1)-N(3)	118.12(12)
O(5)-Tb(1)-O(3)	137.64(12)	N(2)-Tb(1)-N(1)	68.14(12)
O(5)-Tb(1)-O(4)	134.33(12)	N(2)-Tb(1)-N(3)	68.50(12)
O(5)-Tb(1)-O(6)	132.12(12)		

Figure S9. Coordination polyhedra of the nine-coordinate {LnN₃O₆} lanthanide cores showing tricapped-trigonal prism (TTP) coordination geometry in complexes **1** (a), **2** (b), and **3** (c).

Figure S10. Variation of Ln-X (X=O, N) bond lengths in [Ln(DTPAAQ)(DMF)] (1-3) for $\{LnN_3O_6\}$ core. Average bond distances were taken from similar set of bonds.

Bond Distance	[Pr(DTPAAQ)(DMF)] [Eu(DTPAAQ)(DMF)] [Tb(DTPAAQ)(DMF)]			
	(1)	(2)	(3)	
Ln-O1 (CONH)	2.508(4)	2.453(4)	2.419(3)	
Ln-O2 (CONH)	2.519(4)	2.486 (5)	2.463(3)	
Ln-O3 (COOH)	2.404(4)	2.348(5)	2.334(3)	
Ln-O4 (COOH)	2.422(4)	2.366(4)	2.338(3)	
Ln-O5 (COOH)	2.421(4)	2.339(5)	2.327(3)	
Ln-N(NCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ N)	2.697(4)	2.636(5)	2.625(4)	
Ln -N(-NHCH ₂ CH ₂ N1CH ₂ CH ₂ N-)	2.737(4)	2.689(6)	2.662(4)	
Ln -N(-NHCH ₂ CH ₂ N 3 CH ₂ CH ₂ N-)	2.824(5)	2.759(6)	2.728(4)	
Ln-O(DMF)	2.453(4)	2.394(5)	2.358(3)	

Respective bond distances are shown in table below.

Figure S11. Overlay of steady state luminescence spectra of [Pr(DTPAAQ)(DMF)] (1), [Eu(DTPAAQ)(DMF)] (2), and [Tb(DTPAAQ)(DMF)] (3) in aqueous - DMF at λ_{ex} = 262 nm with slit width of 5 nm. *Note: The band at 524 nm arises due to second order Rayleigh scattering.*

Figure S12. Time-resolved luminescence spectra of [Pr(DTPAAQ)(DMF)] (1) in in DMF at 298 K. Delay time = 0.1 ms, $\lambda_{ex} = 330$ nm, slit width= 5 nm.

Table S6. Luminescence lifetime $(\tau)^a$, determination of inner-sphere hydration number $(q)^b$ of the complexes in H₂O and D₂O.

Complex	λ_{ex} (nm)	$\tau^{\rm H_2O}$ (ms)	$\tau^{D}2^{O}$ (ms)	q
[Eu(DTPAAQ)(DMF)] (2)	330 nm	0.64	1.81	0.92
[Tb(DTPAAQ)(DMF)] (3)	330 nm	0.51	0.58	0.88

^a luminescence lifetime measured from decay curve profile from ${}^{5}D_{0}$ and ${}^{5}D_{4}$ excited states at 616 nm and 545 nm for Eu³⁺ and Tb³⁺ complexes respectively within experimental uncertainty of \pm 10%. ^bq is the number of water molecules coordinated to Ln³⁺ ion in solution measured from modified Horrock's equation⁴² described in experimental section of manuscript.

Figure S14. Absorption spectral traces of complex **1** in 5 mM Tris-HCl buffer (pH 7.2) on increasing amount of CT-DNA to solution of **1**. Inset figure shows plot of [DNA] versus { $(\varepsilon_a - \varepsilon_f)/(\varepsilon_b - \varepsilon_f)$ }.

Figure S15. Absorption spectral traces of complex 2 in 5 mM Tris-HCl buffer (pH 7.2) on increasing amount of CT-DNA to a solution of 2. Inset figure shows plot of [DNA] versus {($\epsilon_a - \epsilon_f$)/($\epsilon_b - \epsilon_f$)}.

Figure S16. Absorption spectral traces of complex 3 in 5 mM Tris-HCl buffer (pH 7.2) on increasing amount of CT-DNA to solution of 3. Inset figure shows plot of [DNA] versus {($\epsilon_a - \epsilon_f$)/($\epsilon_b - \epsilon_f$)}.

Figure S17. Emission spectral overlay plot for CT- bounded ethidium bromide (3 μ M) in Tris -HCl buffer (5 mM, pH 7.2) with increasing concentration of [Pr(DTPAAQ)(DMF)] (1).

Figure S18. Emission spectral overlay plot for CT-bounded ethidium bromide (3 μ M) in Tris-HCl buffer (5mM, pH7.2) with increasing concentration of [Pr(DTPAAQ)(DMF)] (**2**).

Figure S19. Emission spectral overlay plot for CT-DNA bounded ethidium bromide (3 μ M) in Tris HCl-NaCl buffer (5mM, pH7.2) with increasing concentration of [Tb(DTPAAQ)(DMF)] (3).

Figure S20. The effect of increasing concentration of [Pr(DTPAAQ)(DMF)] (1) on the fluorescence quenching of BSA (2 μ M) in Tris HCl- NaCl (5mM, pH 7.2). $\lambda_{ex} = 295$ nm, $\lambda_{em} = 340$ nm. The Inset shows the plot of I_0/I vs. [complex].

Figure S21. The effect of increasing concentration of [Eu(DTPAAQ)(DMF)] (2) on the fluorescence quenching of BSA (2 μ M) in Tris HCl- NaCl (5mM, pH 7.2). $\lambda_{ex} = 295$ nm, $\lambda_{em} = 340$ nm. The Inset shows the plot of I_0/I vs. [complex].

Figure S22. Time resolved luminescence spectra of complex [Tb(DTPAAQ)(DMF)] (**3**) (delay time = 0.1 ms, λ_{ex} = 330 nm) in response to increasing concentration of CT-DNA in Tris HCl-NaCl buffer (5 mM, pH 7.2) at 298 K.

Figure S23. Luminescence decay profile from ${}^{5}D_{0}$ state of Eu(III) in complex **2** and from ${}^{5}D_{4}$ of Tb in complex **3** at $\lambda_{em} = 616$ nm and 543 nm ($\lambda_{ex} = 330$ nm) respectively in presence of CT-DNA in 5 mM Tris buffer in water (blue) and in D₂O (green). [**2**] = 40 μ M, [DNA] = 60 μ M, delay time and gate time = 0.1 ms, Ex. and Em. slit = 10 nm. The solid lines are the best fits considering single-exponential behaviour of the decay.

Table S7. Luminescence lifetime $(\tau)^a$, determination of inner-sphere hydration number (q) in presence of CT-DNA.^a

Complex	$\lambda_{ex}(nm)$	au Tris buffer in H ₂ O (ms) ^b	au Tris buffer in D ₂ O (ms) ^c	q
[Eu(DTPAAQ)(DMF)] (2)	330 nm	0.950	1.760	0.290
[Tb(DTPAAQ)(DMF)] (3)	330 nm	0.565	0.596	0.160

^a [complex] = 40 μ M, [DNA] = 60 μ M, ^b In 5 mM Tris-HCl/NaCl buffer in Milli-Q water (pH 7.2). ^c In 5 mM Tris-HCl/NaCl buffer in D₂O.

Figure S24. Cleavage of SC pUC19 DNA (0.2 μ g) by the complexes 1-3 at 100 μ M concentration in Tris-HCl/NaCl buffer (pH, 7.2) on photo-irradiation in UV-light at 312 nm for varying time of photoexposure.

SI. No.	Reaction condition	<i>t</i> / min	SC(%)	NC(%)
1.	DNA control	60	96	4
2.	DNA + complex 1	0	97	3
3	DNA + complex 1	20	75	25
4	DNA + complex 1	40	50	50
5	DNA + complex 1	60	29	71
6	DNA + complex 2	0	96	4
7	DNA + complex 2	20	70	30
8	DNA + complex 2	40	51	59
9	DNA + complex 2	60	27	73
10	DNA + complex 3	0	95	5
11	DNA + complex 3	20	53	47
12	DNA + complex 3	40	23	77
13	DNA + complex 3	60	5	95