Understanding and controlling the release mechanism of *Escherichia coli* in double W₁/O/W₂ emulsion globules in the presence of NaCl in the W₂ phase

Hani El Kadri¹, Tim Overton^{1,2}, Serafim Bakalis¹, Kostas Gkatzionis^{1,2*}

1. School of Chemical Engineering and 2. Institute of Microbiology & Infection University of Birmingham, United Kingdom

* k.gkatzionis@bham.ac.uk

Table S1. The rotational speeds of the rotor used to homogenize the different formulations of W_1/O and $W_1/O/W_2$.

W/O ₁	Tween80	Rotor speed	Rotor speed	
percentage	percentage	(rpm) for	(rpm) for	
		W/O ₁	$W_1/O/W_2$	
20	1	3000	2000	
20	5	5000	1800	
40	1	3000	2300	
40	5	5000	2600	

Table S2. The encapsulation efficiency (%) of *E. coli*-GFP and D (4,3) of different $W_1/O/W_2$ emulsions. Results are taken from a minimum of 3 independent experiments.

DE Formulations	20% W ₁ , 1%	20% W ₁ , 5%	40% W ₁ , 1%	40% W ₁ , 5%
	Tw80	Tw80	Tw80	Tw80
Encapsulation efficiency (%)	99.95±0.02	99.9±0.03	99.93±0.02	99.9±0.09
D (4, 3)	67±1.37	64.1±0.85	70.9±0.17	70±1

Figure S1. Schematic illustration of the two-step emulsification of a $W_1/O/W_2$ emulsions and encapsulation of bacteria.

Figure S2. Particle size [D (4, 3)] analysis of the W_1 droplets from W_1/O emulsion. W_1/O emulsion is prepared with 20% or 40% W_1 with or without bacteria stabilized with 2% lipophilic surfactant. Measurements were taken at refractive index of 1.33.

Figure S3. Optical images of W_1/O emulsions. W_1/O emulsions were prepared with water (W_1) volume percentage of 20% or 40% with or without bacteria and stabilized with 2% PGPR. The formulations were as follows: A) 40% W_1 with no bacteria mixed at 5000rpm; B) 40% W_1 with bacteria mixed at 5000 rpm; C) 20% W_1 with no bacteria mixed at 3000 rpm; D) 20% W_1 with bacteria mixed at 3000 rpm. Scale bar: 10µm.

Figure S4. Fluorescent images of W_1 droplets encapsulating GFP-*E.coli* within a W_1/O emulsion. Scale bar: 5 µm.

Video S1. Optical video-microscopy showing oil globule bursting and release of W_1 droplets into W_2 after adding NaCl in W_2 . The $W_1/O/W_2$ emulsion was prepared with inner W_1 phase volume percentage of 40% containing bacteria and stabilized with 1% Tween80 containing 0.085 M NaCl in the W_2 phase.

Video S2. Fluorescence video-microscopy showing bursting of oil globule and release of *E. coli*-GFP after altering the osmotic balance. The double emulsion was prepared with inner W_1 phase volume percentage of 40% containing bacteria and stabilized with 1% Tween80 containing 0.085 M NaCl in the W_2 phase.

Video S3. Fluorescence video-microscopy showing *E. coli*-GFP cells located within oil globules after loss of W_1 phase with no bursting of the oil globules occurring after osmotic balance alteration. The $W_1/O/W_2$ emulsion was prepared with inner W_1 phase volume percentage of 20% containing bacteria and stabilized with 5% Tween 80 containing 0.085 M NaCl in the W_2 phase.

Video S4. Fluorescence video-microscopy showing *E. coli*-GFP cells located within two oil globules before and after coalescing with each other during loss of W_1 phase due to the presence of NaCl in W_2 . The $W_1/O/W_2$ emulsion was prepared with inner W_1 phase volume percentage of 40% containing bacteria and stabilized with 1% Tween 80 containing 0.085 M NaCl in the W_2 phase.

Figure S5. Particle size [D (4, 3)] analysis of the oil globules from freshly made $W_1/O/W_2$ emulsion before altering the osmotic balance. The $W_1/O/W_2$ emulsion is prepared with 40% W_1 containing no bacteria stabilized with 1% Tween80 and no NaCl added to the W_2 phase. Measurements were taken at refractive index of n_D^{22} 1.396.

Figure S6. Particle size [D (4, 3)] analysis of oil globules from W₁/O/W₂ double emulsion after altering the osmotic balance. The W₁/O/W₂ emulsion is prepared with 40% W₁ containing no bacteria stabilized with 1% Tween80 and 0.085 M NaCl added to the W₂ phase. Measurements were taken at refractive index of $n_{\rm p}^{22}$ 1.396.

Figure S7. Particle size [D (4, 3)] analysis of W₁/O globules of serum phase and W₁/O/W₂ emulsion after altering the osmotic balance. The W₁/O/W₂ emulsion is prepared with 40% W₁ containing no bacteria stabilized with 1% Tween80 and 0.085 M NaCl in the W₂ phase. Measurements were taken at refractive index of n_D^{22} 1.396.

Figure S8. Optical observation of the serum phase. W_1 droplets persisted in the serum phase after adding 0.085 M NaCI. Scale bar = 10 μ m.