Electronic Supplementary Information

Formation of fluorescent platinum nanoclusters using hyper-

branched polyethylenimine and their conjugation to antibody

for bio-imaging

Xin Huang,^a Hidekazu Ishitobi,^{a, b} and Yasushi Inouye^{*a, b, c}

^aGraduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan.

^bDepartment of Applied Physics, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ^cPhotonics Advanced Research Center, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

*Corresponding author: Yasushi Inouye Email: ya-inoue@ap.eng.osaka-u.ac.jp TEL: +81-6-68794615 FAX: +81-6-68794619

Characterization.

pH Measurement: The pH of the samples was measured by pH meter F-52 (HORIBA, Ltd. Japan) at 25 °C.

DLS Measurement: The average hydrodynamic size of the samples was measured by a high-performance two angle particle and molecular size analyzer (Zetasizer Nano ZS) using dynamic light scattering with 'NIBS' optics (DLS, Malvern Instruments, United Kingdom) at 25 °C.

UV/Vis Spectrophotometric Analysis: A UV-2450 spectrophotometer (Shimadzu Corporation, Japan) was used to measure the quantum yields (QYs).

Photoluminescence Spectrophotometric Analysis: The excitation and emission spectra of Pt NCs were measured with a FP-6200 Spectrofluorometer (Shimadzu Corporation, Japan) equipped with a high-power Xenon lamp.

Transmission Electron Microscopy (TEM): TEM was performed at room temperature with JEM-1011 (JEOL, Japan), and the size-distribution of Pt NCs@PEI was analyzed by ImageJ 1.47v software.

Quantum Yield Measurement: The photoluminescence (PL) QY of a compound is defined as the fraction of molecules that emit a photon after direct excitation by the source.¹ This quantity is not the same as the number of emitted photons that escape a bulk sample divided by the number of absorbed photons, although in many instances the two quantities are nearly equal.

Equation 1 was used to measure the relative PL QY:

$$\Phi_{unk} = \frac{A_{std}}{A_{unk}} \times \frac{F_{unk}}{F_{std}} \times \frac{n_{unk}^2}{n_{std}^2} \times \Phi_{std}$$
(1)

 $\Phi = QY$; unk = unknow sample; std = standard; n = refractive index of solvent; A = absorption at the selected excitation wavelength; and F = integrated fluorescence signal in the emission region. To calculate the QY of Pt NCs@PEI, rhodamine 6G ($\Phi = 0.95$) was employed as the standard and a UV-2450 spectrophotometer (Shimadzu Corporation, Japan) was used. All samples were diluted to ensure optical densities of less than 0.02 in order to reduce the error. Emission spectra were recorded on a FP-6500 fluorescence spectrometer under the excitation of 500 nm light.

Conjugation of Qdots to Antibody.

A common EDC/Sulfo-NHS coupling reaction was employed to conjugate Qdots@COOH to the antibodies. EDC (4.0 μ L, 1 mM) and sulfo-NHS (4.0 μ L, 1 mM) was added into 1 mL Qdots@COOH (200 nM) and the mixture was activated for 30 min at room temperature. The molar ratio of EDC/NHS/ Qdots was 20:20:1. Subsequently, anti-CXCR4-Ab (20 μ L, 1 mg/mL) was introduced into the mixture, which was stirred for another 2 h. Finally, the Qdots@COOH-CXCR4-Ab solution was incubated at 4 °C overnight. The purification and storage methods were the same as above for Pt NCs@PEI-(anti-CXCR4-Ab).

Figure S1-S7.

Fig. S1 DLS spectrum of Pt NCs@PEI at various pH conditions during the reduction process.

Fig. S2 Excitation and emission matrix (EEM) spectra of Pt NCs@PEI synthesized under the basic (a), neutral (b), acidic (c) condition fixing the molar ratio between Pt ions and reducing agent at 1:25.

Fig. S3 XPS of the pure Pt powder.

Fig. S4 Fluorescence spectra of Pt NCs@PEI (black solid line) and Pt NCs@PEI-(anti-CXCR4-Ab) (red dotted line).

Fig. S5 (a) Differential interference contrast (DIC) image, (b) laser confocal fluorescent microscopic image, and (c) merging of the two of living HeLa cells labeled with Pt NCs@PEI. (d) DIC image, e) fluorescent image, and (f) merging of the two images of living HeLa cells labeled with Pt NCs@PEI-(anti-CXCR4-Ab) conjugates. Scale bars, 20 μm.

Fig. S6 Cell viability of HeLa cells incubated with no label (control group), Pt NCs@PEI (50 nM) or Qdots@COOH (50 nM) at different incubation times.

Fig. S7 Cell viability of HeLa cells incubated with Pt NCs@PEI at various concentrations and incubation times.

References.

1 G. A. Crosby and J. N. Demas, J. Phys. Chem., 1971, 75, 991-1024.