Supplementary Information

Eco-friendly polysorbate aqueous solvents for efficient dissolution of lignin

Airong Xu*, Wenjing Li, Yibo Zhang and Hang Xu

School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China

Materials and methods

Materials

Kraft lignin was purchased from Sigma-Aldrich; Polysorbate (Tween-80) was purchased from Shanghai Jingchun Biotechnology Co. Ltd.. The two materials were used as received.

Dissolution of lignin in the Tween-80/H₂O solvent

In a typical dissolution experiment, water, at a given mass ratio, was added to Tween-80 to gain Tween-80/H₂O solvent. Lignin was added into a 20 mL colorimetric tube which contained 2.0 g of Tween-80/H₂O solvent, and the tube was sealed with parafilm. The tube was then immersed in an oil bath (DF-101S, Gongyi Yingyu Instrument Factory), and the bath temperature was controlled to be 25 ± 0.5 °C. The lignin/Tween-80/H₂O mixture was heated and stirred at 25 °C. Additional lignin was added until the solution became completely clear under polarization microscope (Nanjing Jiangnan Novel Optics Co. Ltd.). When lignin became saturated, judged by the fact that lignin could not be dissolved further within 1-2 h, its solubility (expressed by gram per 100g of solvent) at 25 °C could be calculated from the amount of the solvent and lignin added.

Measurements of UV/Vis spectra for the Tween-80/H₂O/lignin solution

Measurement of maximum absorption wavelength for lignin in Tween-80/H₂O/lignin solution was recorded on a PERSEE TU-1900 UV/Vis spectrophotometer in transmission mode over a range of 190–500 nm at 25 $^{\circ}$ C.

Characterization of the regenerated lignin

Fourier transform infrared (FTIR) spectra were recorded on a Necolet Nexus spectrometer with KBr pellets. A total of 16 scans were taken for each sample at a resolution of 2 cm^{-1} .

Thermogravimetric analysis (TGA) was carried out with a NETZSCH STA 449 C thermal analyser using alumina crucibles. The sample mass was ca. 10-15mg per measurement. The measurements were carried out under flowing N_2 at a heating rate of 10°C min⁻¹.

¹³C NMR spectra of neat Tween-80 and Tween-80 in Tween-80/H₂O(R=1.5) solution were collected at room temperature on a Bruker Avance-400 NMR spectrometer operating at 400.13 MHz. DMSO- d_6 was used as an external standard. Chemical shifts were given in ppm downfield from TMS. ¹³C NMR spectra of Tween-

80 in Tween-80/D₂O(R=1.5) solvent and Tween-80/D₂O(R=1.5)/lignin(8 %) solution were collected at room temperature on a Bruker Avance-400 NMR spectrometer operating at 400.13 MHz. D₂O was used as deuterated solvent and co-solvent in place of H₂O for the convenience of ¹³C NMR measurements due to the similarity of D₂O with H₂O. Chemical shifts were given in ppm downfield from TMS. ¹³C NMR spectra of Tween-80 were reported as follows.

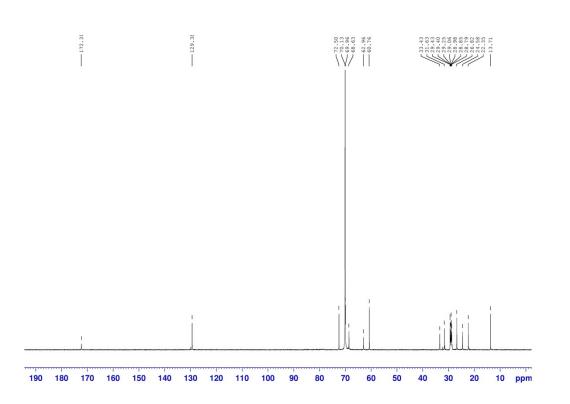
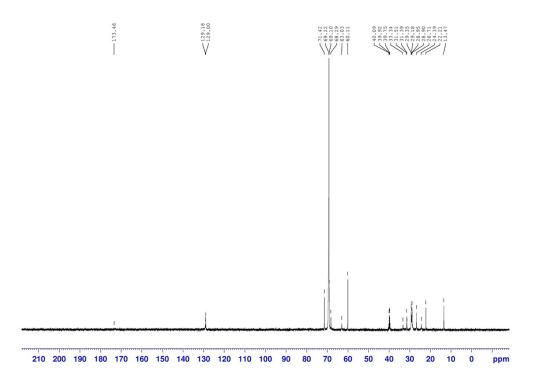



Fig. S1 ¹³C NMR spectra of neat Tween-80. DMSO- d_6 was used as an external standard.

Fig. S2 ¹³C NMR spectra of Tween-80 in Tween-80/H₂O(R=1.5) solution. DMSO- d_6 was used as an external standard.

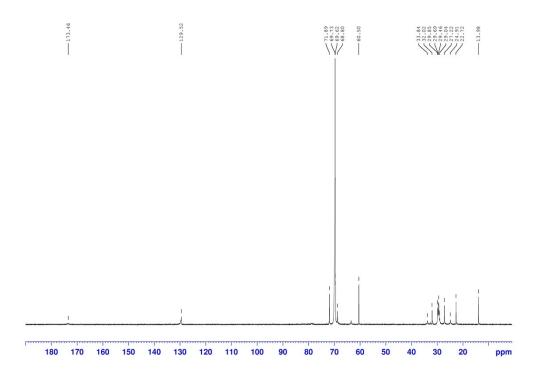
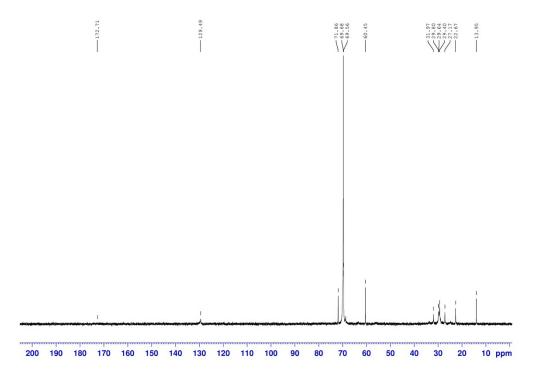



Fig. S3 ¹³C NMR spectra of Tween-80 in Tween-80/ $D_2O(R=1.5)$ solution.

Fig. S4 ¹³C NMR spectra of Tween-80 in Tween-80/D₂O(R=1.5)/lignin(8 %) solution solution.