Supporting Information

Hetero Aromatic Donors as Effective Terminal Groups for DPP Based Organic Solar Cells

^a Network of Institutes for Solar Energy, CSIR- Indian Institute of Chemical Technology, I&PC Division, Uppal Road, Tarnaka, Hyderabad - 500 607, India.

^bAcademy of Scientific and Innovative Research, CSIR-IICT

c Department of Electronics and Communication Engineering, LNMIIT, Jaipur, India

^dR & D Center for Science and Engineering, JEC Group of Colleges, Jaipur Engineering College Campus, Kukas, Jaipur 302028, India

E-mail: <u>chandra@iict.res.in</u> phone Fax: +00914027193186 (M. Chandrasekharam)

gdsharma273@gmail.com and sharmagd_in@yahoo.com (G. D. Sharma)

Content

Figure S1. Structures of optimized geometries of CSDPP5-CSDPP8 at B3LYP/6-311 G(d,p)
level
Figure S2. Molecular orbitals of (a) CSDPP5 , (b) CSDPP6 , (c) CSDPP7 , and (d) CSDPP8 in B3LYP functional, involved in transitions that contribute to the first excitation and to the next high absorbance excitation
Figure S3. Percentage contributions of the orbital density of the individual groups in HOMO-2, HOMO-1, HOMO, LUMO, LUMO+1 and LUMO+2 of the CSDPP dyes
Table S1-Table S4. Calculated excitation energies S6
Table S5. Calculated HOMOs and LUMOs energy levels S7
Table S6. Optimized geometry parameters of CSDPP5-CSDPP8 calculated at B3LYP/6-31 G(d,p) level theory

Figure S1. Structures of optimized geometries of **CSDPP5-CSDPP8** at B3LYP/6-311 G(d,p) level theory.

Figure S2. Molecular orbitals of (a) **CSDPP5**, (b) **CSDPP6**, (c) **CSDPP7**, and (d) **CSDPP8** in B3LYP functional, involved in transitions that contribute to the first excitation and to the next high absorbance excitation.

Figure S3. Percentage contributions of the orbital density of the individual groups in HOMO-2, HOMO-1, HOMO, LUMO, LUMO+1 and LUMO+2 of the **CSDPP** dyes.

N_States	E (eV)	WL (nm)	f	Composition
1	2.01	615	1.2162	$H \rightarrow L (99\%)$
2	2.26	548	0.0015	$\text{H-1} \rightarrow \text{L} (99\%)$
3	2.39	520	0.1307	$\text{H-2} \rightarrow \text{L} (98\%)$
4	2.99	414	0.0014	$\text{H-3} \rightarrow \text{L} (18\%)$
5	3.16	393	0.0417	H-7 → L (43%)
6	3.19	390	0.3008	$H-4 \rightarrow L (82\%)$
7	3.22	386	0.0062	H-7 → L (35%)
8	3.22	374	0.1176	$\text{H-1} \rightarrow \text{L+1} (87\%)$
9	3.40	365	0.0006	$\text{H-2} \rightarrow \text{L+1} (83\%)$
10	3.50	355	0.0097	$\text{H-12} \rightarrow \text{L} (14\%)$

 Table S1. Calculated excitation energies for CSDPP5 in THF solution.

 Table S2. Calculated excitation energies for CSDPP6 in THF solution.

N_States	E (eV)	WL (nm)	f	Composition
1	1.99	624	1.2145	$H \rightarrow L (99\%)$
2	2.24	554	0.0011	$\text{H-1} \rightarrow \text{L} (99\%)$
3	2.36	525	0.1227	$H-2 \rightarrow L (98\%)$
4	2.97	418	0.0009	$\text{H-3} \rightarrow \text{L} (17\%)$
5	3.13	396	0.0028	$\text{H-7} \rightarrow \text{L} (51\%)$
6	3.15	394	0.3491	$H-4 \rightarrow L (88\%)$
7	3.19	388	0.0106	$H-7 \rightarrow L (26\%)$
8	3.30	376	0.1184	$\text{H-1} \rightarrow \text{L+1} (88\%)$
9	3.38	367	0.0011	$\text{H-2} \rightarrow \text{L+1} (84\%)$
10	3.50	355	0.0452	$\text{H-8} \rightarrow \text{L} (21\%)$

N_States	E (eV)	WL (nm)	f	Combination
1	2.05	606	1.5051	$H \rightarrow L (99\%)$
2	2.62	473	0.0027	$\text{H-1} \rightarrow \text{L} (97\%)$
3	2.78	445	0.1448	$\text{H-2} \rightarrow \text{L} (97\%)$
4	3.08	402	0.0015	$\text{H-3} \rightarrow \text{L} (81\%)$
5	3.11	399	0.0603	$H-4 \rightarrow L (95\%)$
6	3.15	394	0.0036	$\text{H-7} \rightarrow \text{L} (14\%)$
7	3.24	382	0.001	$\text{H-7} \rightarrow \text{L} (33\%)$
8	3.43	361	0.0215	$H \rightarrow L+2 (78\%)$
9	3.44	361	0.0005	$H \rightarrow L+2 (13\%)$
10	3.55	350	0.0073	$\text{H-10} \rightarrow \text{L} (17\%)$

 Table S3. Calculated excitation energies for CSDPP7 in THF solution.

 Table S4. Calculated excitation energies for CSDPP8 in THF solution.

N_States	E (eV)	WL (nm)	f	Composition
1	2.02	614.3872	1.4894	$H \rightarrow L (99\%)$
2	2.60	476.9874	0.0038	$\text{H-1} \rightarrow \text{L} (97\%)$
3	2.77	448.2081	0.1569	$\text{H-2} \rightarrow \text{L} (97\%)$
4	3.06	404.8832	0.001	$\text{H-3} \rightarrow \text{L} (73\%)$
5	3.09	401.5525	0.0611	$H-4 \rightarrow L (96\%)$
6	3.11	398.1098	0.0042	$\text{H-3} \rightarrow \text{L} (21\%)$
7	3.21	385.9043	0.0019	$\text{H-7} \rightarrow \text{L} (13\%)$
8	3.42	362.917	0.0193	$H \rightarrow L+2 (89\%)$
9	3.43	362.2913	0.001	$H \rightarrow L+3 (89\%)$
10	3.55	349.2488	0.0182	$\text{H-10} \rightarrow \text{L} (21\%)$

 Table S5. Calculated HOMOs and LUMOs energies (eV) of the CSDPP molecules.

	CSDPP5	CSDPP6	CSDPP7	CSDPP8
L+2	-1.17	-1.18	-1.26	-1.26
L+1	-1.74	-1.77	-1.51	-1.54
L	-2.88	-2.91	-2.75	-2.77
Н	-5.18	-5.16	-5.06	-5.04
H-1	-5.45	-5.45	-5.68	-5.68
H-2	-5.56	-5.56	-5.85	-5.85
H-L Gap	2.30	2.25	2.31	2.27

CSDPP5		CSDPP6		CSDPP7		CSDPP8		
Bond lengths (°A)								
$C_{6}-C_{12}$	1.44	$C_{6}-C_{12}$	1.44	$C_{6}-C_{12}$	1.44	$C_{6}-C_{12}$	1.44	
$C_{15}-C_{59}$	1.46	C_{15} - C_{75}	1.46	$C_{15}-C_{59}$	1.46	C_{15} - C_{75}	1.46	
C_3-C_{11}	1.44	C_3-C_{11}	1.44	C_3-C_{11}	1.44	C_3-C_{11}	1.44	
C_{18} - C_{84}	1.46	C_{18} - C_{100}	1.46	C_{18} - C_{83}	1.46	C_{18} - C_{99}	1.46	
			Dihedral ang	gles (°)				
S ₁₇ -C ₁₁ -C ₃ -C ₂	18.97	$N_7 - C_6 - C_{12} - C_{13}$	11.54	$C_2 - C_3 - C_{11} - S_{17}$	19.10	$N_4-C_3-C_{11}-C_{20}$	18.16	
S ₁₇ -C ₁₁ -C ₃ -N ₄	-163.37	N7-C6-C12-S16	-167.87	$C_2 - C_3 - C_{11} - C_{20}$	-159.74	$C_2 - C_3 - C_{11} - C_{20}$	-159.35	
C_{20} - C_{11} - C_3 - C_2	-159.91	$S_{16}-C_{12}-C_{6}-C_{1}$	11.57	S ₁₇ -C ₁₁ -C ₃ -N ₄	-162.96	$S_{17}-C_{11}-C_3-C_2$	18.96	
C_{20} - C_{11} - C_3 - N_4	17.74	C_{13} - C_{12} - C_{6} - C_{1}	-169.01	$S_{17}-C_{11}-C_3-C_2$	19.11	S ₁₇ -C ₁₁ -C ₃ -N ₄	-163.51	
S ₁₇ -C ₁₈ -C ₈₄ -C ₈₅	-27.27	S ₁₆ -C ₁₅ -C ₇₅ -C ₇₆	-26.77	S ₁₇ -C ₁₈ -C ₈₃ -C ₈₄	-28.28	S_{17} - C_{18} - C_{99} - C_{100}	-28.09	
S ₁₇ -C ₁₈ -C ₈₄ -C ₈₆	152.15	S ₁₆ -C ₁₅ -C ₇₅ -C ₇₇	153.67	S ₁₇ -C ₁₈ -C ₈₃ -C ₃₅	152.08	S_{17} - C_{18} - C_{99} - C_{101}	152.28	
C_{85} - C_{84} - C_{18} - C_{19}	152.06	C ₁₄ -C ₁₅ -C ₇₅ -C ₇₇	-28.09	C_{19} - C_{18} - C_{83} - C_{85}	-28.16	C_{19} - C_{18} - C_{99} - C_{101}	-27.91	
$C_1 - C_6 - C_{12} - C_{13}$	-157.19	C ₁₄ -C ₁₅ -C ₇₅ -C ₇₆	152.47	C ₁₉ -C ₁₈ -C ₈₃ -C ₈₄	151.47	C ₁₉ -C ₁₈ -C ₉₉ -C ₁₀₀	151.71	
C ₆ -C ₁₂ -C ₁₃ -N ₇	-9.91	$C_2 - C_3 - C_{11} - S_{17}$	19.39	$N_7 - C_6 - C_{12} - C_{13}$	20.72	S ₁₆ -C ₁₅ -C ₇₅ -C ₇₈	-28.07	
N ₇ -S ₁₆ -C ₆ -C ₁₂ -C ₁	-39.97	$C_2 - C_3 - C_{11} - C_{20}$	-158.78	N ₇ -C ₆ -C ₁₂ -S ₁₆	-160.57	S ₁₆ -C ₁₅ -C ₇₅ -C ₇₇	152.11	
$S_{16}-C_{6}-C_{12}-C_{1}$	-21.78	C_{20} - C_{11} - C_3 - N_4	18.28	$S_{16}-C_{12}-C_{6}-C_{1}$	20.90	C ₇₇ -C ₇₅ -C ₁₅ -C ₁₄	-28.00	
$C_6-C_{12}-C_1-C_{13}$	-38.98	S_{17} - C_{11} - C_3 - N_4	-163.54	$C_1 - C_6 - C_{12} - C_{13}$	157.80	C ₁₄ -C ₁₅ -C ₇₅ -C ₇₆	151.82	
S ₁₆ -C ₁₅ -C ₅₉ -C ₆₀	-28.63	S_{17} - C_{18} - C_{100} - C_{101}	-27.14	S ₁₆ -C ₁₅ -C ₅₉ -C ₆₀	-29.48	$C_1 - C_6 - C_{12} - S_{16}$	11.29	
C ₆₁ -S ₁₆ -C ₁₅ -C ₅₉	-24.65	S_{17} - C_{18} - C_{100} - C_{102}	152.49	S ₁₆ -C ₁₅ -C ₅₉ -C ₆₁	151.09	$C_1 - C_6 - C_{12} - C_{13}$	-169.49	
C ₁₄ -C ₁₅ -C ₅₉ -C ₆₁	-29.87	C_{19} - C_{18} - C_{100} - C_{102}	-28.33	C ₁₄ -C ₁₅ -C ₅₉ -C ₆₁	-29.33	$N_7 - C_6 - C_{12} - C_{13}$	11.46	
C_{60} - C_{59} - C_{15} - C_{14}	150.70	C_{19} - C_{18} - C_{100} - C_{101}	152.03	C_{14} - C_{15} - C_{59} - C_{60}	150.09	$N_7 - C_6 - C_{12} - S_{16}$	-167.75	

Table S6. Optimized geometry parameters of **CSDPP5-CSDPP8** calculated at B3LYP/6-311 G(d,p) level theory.